吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (3): 1003-1015.doi: 10.13278/j.cnki.jjuese.20230086

• 地球探测与信息技术 • 上一篇    下一篇

基于小波包分解与GA优化BP神经网络的瞬变电磁反演

李瑞友1,白细民2,张勇1,汪靖1,朱亮3,丁小辉1,李广4   

  1. 1.江西财经大学软件与物联网工程学院,南昌330013
    2.江西省勘察设计研究院有限公司,南昌330095
    3.国网江西省电力有限公司供电服务管理中心,南昌330000
    4.东华理工大学地球物理与测控技术学院,南昌330013
  • 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 李广(1988—),男,副教授,主要从事电磁法数据处理及应用等方面的研究,Email: li_guangg@163.com
  • 作者简介:李瑞友(1994—),男,讲师,主要从事瞬变电磁反演、机器学习等方面的研究,Email: liruiyou@jxufe.edu.cn
  • 基金资助:
    国家自然科学基金项目(41904076);江西省教育厅科学技术项目(GJJ2200528);南昌市水文地质与优质地下水资源开发利用重点实验室开放基金(20231B22)

Using Wavelet Packet Denoising and BP Neural Network Based on GA Optimization for Transient Electromagnetic Inversion

Li Ruiyou1,Bai Ximin2,Zhang Yong1,Wang Jing1,Zhu Liang3,Ding Xiaohui1,Li Guang4   

  1. 1. School of Software and Internet of Things Engineering, Jiangxi University of Finance and Economics, Nanchang 330013, China 
    2. Jiangxi Institute Co., Ltd. of Survey and Design, Nanchang 330095, China 
    3.  Power Supply Service Management Center of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330000, China
    4.  School of Geophysics and Measurement Control Technology, East China University of Technology, Nanchang 330013, China
  • Online:2024-05-26 Published:2024-05-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (41904076), the Scientific Research Foundation of Jiangxi Provincial Education Department (GJJ2200528) and the Open Fund from Nanchang Key Laboratory of Hydrogeology and High Quality Groundwater Resources Exploitation and Utilization (20231B22)

摘要: 瞬变电磁反演是高维非凸的复杂非线性反演问题。利用传统的BP(back propagation)神经网络可以有效缓解瞬变电磁反演的过拟合现象,但是BP算法收敛速度慢、易陷入局部最优。为了解决这些问题,提出了一种基于小波包分解(wavelet packet denoising, WPD)和遗传算法(genetic algorithm, GA)优化BP神经网络的方法(WPDGABP),并应用于瞬变电磁反演中。首先,采用基于硬阈值和Daubechies系列中Db13的WPD方法降低观测磁场数据中的噪声成分,同时提出一种剔除冗余特征的样本采集策略。然后,引入具有全局性的GA优化BP神经网络初始权重,提升BP算法的学习能力和求解精度。最后,基于中心回线源一维瞬变电磁正演理论,构建层状地电模型,经WPD预处理后进行反演,并比较GABP与传统Occam、单一BP、PSOBP(particle swarm optimizationBP)、DEBP(differential evolutionBP)等算法的反演结果。理论模型与实测数据反演结果表明:在瞬变电磁层状地电模型反演中,WPDGABP比其他算法具有更高的精度以及更强的稳定性和正演数据拟合能力,可有效应用于电磁探测反演解释中。


关键词: 瞬变电磁法, 小波包分解, BP神经网络, 遗传算法, 反演

Abstract:  Transient electromagnetic inversion is a complex nonlinear problem with highdimensional nonconvexity. The traditional BP neural network can effectively alleviate the overfitting phenomenon for transient electromagnetic inversion. However, the BP method has the disadvantage of converges slowly and easily falls into local optimum. In order to solve these problems, an approach based on wavelet packet denoising (WPD) and genetic algorithm (GA) to optimize BP neural network (WPDGABP) was proposed and applied to transient electromagnetic inversion. A wavelet packet denoising method based on hard threshold and Db13 was used to reduce noise signal from observed magnetic field data. And a sample collection strategy was proposed to remove redundant features. Additionally, the global GA algorithm was introduced to optimize the BP initial weight, which improved the learning ability and solution accuracy for BP. Finally, based on the 1D transient electromagnetic forward theory with center loop source, a layered geoelectric model was established, and then inversion was performed after WPD processing, in which the inversion results by GABP algorithm were compared with that of the traditional Occam, BP, particle swarm optimizationBP (PSOBP) and differential evolutionBP (DEBP). The results of theoretical model and measured examples show that the proposed method is superior to others algorithm in the accuracy, stability and higher forward data fitting ability, which can be effectively applied to the inversion interpretation for electromagnetic exploration.


Key words: transient electromagnetic method, wavelet packet denoising, BP neural network, genetic algorithm, inversion

中图分类号: 

  • P631
[1] 雷松达, 王显祥, 刘遂明. 复杂地质条件下浅海区电性源瞬变电磁法三维响应特征[J]. 吉林大学学报(地球科学版), 2024, 54(3): 1016-1030.
[2] 高小伟, 苏超, 庞少东. 煤矿倾斜地层瞬变电磁加权横向约束反演[J]. 吉林大学学报(地球科学版), 2024, 54(1): 310-322.
[3] 顾观文, 王顺吉, 李桐林, 武晔, 许志河. 不同供电方向激励对多极距组合中梯装置三维激电探测效果的影响#br#[J]. 吉林大学学报(地球科学版), 2024, 54(1): 292-309.
[4] 张盼, 韩立国, 巩向博, 张凤蛟, 许卓. 金属矿地震勘探方法技术研究进展[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1969-1982.
[5] 马国庆, 王君楠, 孟庆发, 孟兆海, 秦朋波, 王泰涵, 李丽丽. 航空重(磁)多参量梯度探测与反演技术研究进展[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1928-1949.
[6] 许志河, 孙丰月, 顾观文, 牛兴国, 钱 烨. 中亚造山带岩浆铜镍硫化物矿床深部找矿:以红旗岭铜镍矿床为例[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1649-1657.
[7] 杨夫杰, 杨海燕, 姜志海, 岳建华, 刘志新, 苏本玉, 张华, 李哲, 汪凌. 圆锥型场源瞬变电磁自适应正则化反演[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1328-.
[8] 崔焕玉, 沈金松, 冉尚, 周杰民. 基于有限体积法的煤矿巷道瞬变电磁响应二维反演与富水区探测应用[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1314-.
[9] 徐正玉, 付能翼, 周洁, 付志红.

瞬变电磁法非线性优化反演算法对比 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 744-753.

[10] 王新宇, 严良俊, 毛玉蓉, 黄鑫, 谢兴兵, 周磊 .

起伏地形条件下长偏移距瞬变电磁三维正演 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 754-765.

[11] 薛志刚, 轩义华, 刘铮, 但志伟, 史文英, 秦宏国. 气云区全波形反演约束Q场建模技术[J]. 吉林大学学报(地球科学版), 2022, 52(2): 613-623.
[12] 李键, 何新建, 黄鋆. 重力密度反演的自适应异常权函数法及其对东海钓北凹陷地层结构划分[J]. 吉林大学学报(地球科学版), 2022, 52(1): 229-.
[13] 齐彦福, 李貅, 孙乃泉, 戚志鹏, 周建美, 张明晶, 邢涛. 电性源短偏移距瞬变电磁地形影响特征分析[J]. 吉林大学学报(地球科学版), 2022, 52(1): 247-.
[14] 樊文鑫, 李光明, 梁生贤. 西藏扎西康铅锌多金属矿床控矿构造的电性特征及找矿预测[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1709-1719.
[15] 张志立, 韩复兴, 孙文艳, 王怡, 杨安琪, 焦艳艳, 薛诗桂. 利用正演模拟实现面波衰减[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1890-1896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!