吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (6): 2006-2017.doi: 10.13278/j.cnki.jjuese.20230279
王明常,丁文,赵竞争,吴琳琳,王凤艳,纪雪
Wang Mingchang, Ding Wen, Zhao Jingzheng, Wu Linlin, Wang Fengyan, Ji Xue
摘要: 落叶松毛虫害的大规模爆发导致了森林生态系统和经济的严重损失,快速、准确地对落叶松毛虫害发生区域进行识别具有重要的意义。本研究采用知识图谱技术,对与森林虫害相关的敏感特征进行筛选,并综合利用多源数据,分别构建3种不同数据组合的随机森林模型,对研究区内落叶松毛虫害发生区进行遥感识别。结果表明:1)依据图谱构建流程可以实现知识图谱构建及筛选,本研究实现了构建森林虫害遥感识别特征图谱,并筛选了中国东北地区落叶松毛虫害的遥感识别特征;2)知识图谱与遥感技术手段相结合,能够为构建虫害识别模型提供有效特征;3)与单一数据源相比,基于多源数据的落叶松毛虫害识别效果更好,本研究综合使用Sentinel-1A、Sentinel-2A和地形数据的总精度和Kappa系数分别为92.78%,0.876 6。
中图分类号:
[1] | 于子望, 郑天琪, 程钰翔. 基于PSO-XGB混合优化技术的浅层地下温度预测:以长春市为例[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1907-1916. |
[2] | 杨国华, 李婉露, 孟博. 基于机器学习方法的地下水氨氮时空分布规律[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1982-1995. |
[3] | 王雪冬, 张超彪, 王翠, 朱永东, 王海鹏. 基于Logistic回归与随机森林的和龙市地质灾害易发性评价[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1957-1970. |
[4] | 杨丽萍, 苏志强, 侯成磊, 白宇兴, 王彤, 孔金玲. 基于随机森林的干旱区全极化SAR土壤含水量反演[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1255-. |
[5] | 王明常, 刘鹏, 陈学业, 王凤艳, 宋玉莲, 刘瀚元. 基于GEE的东北三省城市建设用地扩张研究[J]. 吉林大学学报(地球科学版), 2022, 52(1): 292-. |
[6] | 吴志春, 郭福生, 林子瑜, 侯曼青, 罗建群. 三维地质建模中的多源数据融合技术与方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1895-1913. |
[7] | 叶润青, 牛瑞卿, 邓清禄, 张良培, 赵艳南, 吴婷, 江齐英. 基于多源数据三维可视化集成的高切坡解译[J]. J4, 2012, 42(1): 161-168. |
|