吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (5): 1715-1727.doi: 10.13278/j.cnki.jjuese.20240142

• 地球探测与信息技术 • 上一篇    下一篇

连续随机离散缝网表征技术在中牟凹陷裂缝发育区中的应用

李丛1, 2, 3,张栋1, 2, 3,董果果1, 2, 3,袁青松1, 2, 3,许军1, 2, 3,朱德胜1, 2, 3,代磊1, 2, 3,李鹏飞1, 2, 3,焦通4,郑玉生1, 2, 3,魏俏巧5,刘家橘1, 2, 3   

  1. 1.河南省地质研究院,郑州450001

    2.清洁能源产业技术研究院,河南商丘476000

    3.地下清洁能源勘查开发产业技术创新战略联盟,郑州450001

    4.北京诺克斯达石油科技有限公司,北京100192

    5.吉林大学地球探测科学与技术学院,长春130026





  • 出版日期:2025-09-26 发布日期:2025-11-15
  • 基金资助:

    河南省地质研究院2025年度地质科研项目(2025-904-XM01,2025-904-XM04);河南省重大科技专项(151100311000);中国地质调查局油气资源中心科研项目(2024102)


Application of Continuous Random Discrete Fracture Network Characterization Technology in Fracture Development Zone of Zhongmu Sag

Li Cong1, 2, 3, Zhang Dong1, 2, 3, Dong Guoguo1, 2, 3, Yuan Qingsong1, 2, 3, Xu Jun1, 2, 3, Zhu Desheng1, 2, 3,Dai Lei1, 2, 3, Li Pengfei1, 2, 3, Jiao Tong4, Zheng Yusheng1, 2, 3, Wei Qiaoqiao5, Liu Jiaju1, 2, 3   

  1. 1. Henan Academy of Geology, Zhengzhou 450001, China

    2. Clean Energy Industry Technology Research Academy, Shangqiu 476000, Henan, China

    3. Underground Clean Energy Exploration and Development Industry Technology Innovation Strategic Alliance, Zhengzhou

    450001, China

    4. Beijing Rockstar Petroleum Technology Co., Ltd., Beijing 100192, China

    5. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China

  • Online:2025-09-26 Published:2025-11-15
  • Supported by:
    Supported by 2025 Geological Research Project of Henan Academy  of Geology (2025-904-XM01, 2025-904-XM04),  the Major Science and Technology Project of Henan Province (151100311000) and the Research Project of Oil and Gas Resource Center of China Geological Survey (2024102)

摘要: 中牟凹陷主力含气层段太原组中—小尺度裂缝较为发育。该区构造复杂,煤层屏蔽作用明显,地震资料分辨率和信噪比较低,利用常规手段计算的裂缝数据体难以表征其中—小尺度裂缝发育规律,需要寻找一种适合于该区的裂缝识别方法。为此,本文对三维地震数据依次进行了最大似然体的细化及增强处理,获取初始的裂缝方位及裂缝密度;利用裂缝方位及裂缝密度建立方位指导场,通过方位指导场和裂缝密度计算随机离散缝网模型,将随机离散缝网进行连接处理,建立适合中牟地区的连续随机离散缝网模型,反映中—小尺度裂缝的发育规律及分布特征,并对连续随机离散缝网模型与随机离散缝网模型进行对比分析。结果表明:裂缝距离连接阈值对连续随机离散缝网建模具有重要影响;中牟地区中—小尺度连续裂缝缝网以北东东向为主;该层段随机离散缝网与裂缝密度基本重合,且井周围裂缝方位玫瑰图的方位信息与裂缝建模方向信息一致。该模型在南华北盆地某实验区下古生界地层裂缝发育区的预测中也取得了较好的效果。

关键词: 中牟凹陷, 中—小尺度裂缝, 方位指导场, 随机离散缝网模型, 连续随机离散缝网表征技术

Abstract: The main gas-bearing layer of Zhongmu sag has a relatively well-developed medium-small scale fractures. The complex geological structures in this area, coupled with the shielding effect of the coal seams, have led to both the resolution and the signal-to-noise ratio of the seismic exploration results being lower than the ideal values. The fracture parameters predicted by conventional methods are insufficient to characterize the development of local medium-small scale fractures. This has led to the need for a more suitable method. To address this issue, this paper refined and enhanced the 3D seismic data using maximum likelihood techniques to obtain the initial fracture orientation and fracture density. Based on the initial fracture orientation and density, the orientation guidance field was established, and a random discrete fracture network model was calculated through the orientation guidance field and fracture density. The random discrete fracture networks were connected to establish continuous random discrete fracture network models tailored to Zhongmu area, thereby reflecting the development patterns and distribution characteristics of medium-small scale fractures. And a comparative analysis was made between random discrete fracture network models and continuous random discrete fracture network models. It indicates that the threshold of the connected fracture distance has a significant impact on the modeling of random discrete fracture networks. The network of medium-small scale fractures in Zhongmu area is predominantly orientated in the direction of NEE, i.e., the azimuth of 60°-80°. The random discrete fracture network is coincided with the fractures in the layer. The orientation of the rose diagrams of the fractures located in the surrounding wells is well consistent with that of the fracture network model. The model yielded positive results in fracture prediction within the Lower Paleozoic fracture-developed zone of a pilot area in the south North China basin.

Key words: Zhongmu sag, medium-small scale fractures, orientation guidance field, random discrete slit network model, continuous random discrete seam network characterization technology

中图分类号: 

  • P631.4
[1] 齐娇, 曹思远. 基于先验知识的深度学习表面相关多次波压制方法[J]. 吉林大学学报(地球科学版), 2025, 55(5): 1702-1714.
[2] 靳雪彬, 李丙喜, 张振国, 雷茂盛, 安利双, 丁恺. 匹配追踪分频谱蓝化在叠后地震提频中的应用[J]. 吉林大学学报(地球科学版), 2025, 55(2): 646-656.
[3] 李航, 孙宇航, 李佳慧, 李学贵, 董宏丽, .

基于波动方程的地震波数值模拟研究综述 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 627-645.

[4] 巴忠臣, 秦军, 华美瑞, 张宗斌, 秦赛赛, 张稳. 隐蔽性微小断裂智能识别技术在准噶尔盆地MH1井区的应用[J]. 吉林大学学报(地球科学版), 2025, 55(2): 612-626.
[5] 邢慧婷, 冯晅, 刘财, 郭智奇, 逄硕, 乔汉青, .

基于贝叶斯框架的裂缝型储层频变AVO反演及多参数预测 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 657-669.

[6] 徐杨杨, 商耀达, 孙建国. 基于预条件广义逐次超松弛迭代法的数值格林函数计算方法[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1696-1710.
[7] 于正军, 张军华, 周昊, 任瑞军, 陈永芮, 杨玉龙. 准噶尔盆地东南缘页岩油储层脆性预测与评价[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1711-1723.
[8] 李元燮, 刘财.

基于理性扩展热力学的L-S热声弹性理论框架 [J]. 吉林大学学报(地球科学版), 2024, 54(2): 655-687.

[9] 杨帆, 王长鹏, 张春霞, 张讲社, 熊登.

基于联合加速近端梯度和对数加权核范数最小化的地震数据重建 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1582-1592.

[10] 万晓杰, 巩向博, 成桥, 于明浩.

基于DeCNN的逆时偏移低频噪声压制方法 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1593-1601.

[11] 罗明, 何叶, 周江江, 贾培蒙, 吕华星. 砾砂岩不均匀展布引起的构造畸变[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1360-.
[12] 张军华, 常健强, 王作乾, 胡逸甫, 芦凤明, 孟瑞刚.

90°相移薄互层解释技术理论诠释与实际应用 [J]. 吉林大学学报(地球科学版), 2022, 52(4): 1348-.

[13] 刘 霞, 孙英杰. 基于融合残差注意力机制的卷积神经网络地震信号去噪[J]. 吉林大学学报(地球科学版), 2023, 53(2): 609-.
[14] 张岩, 刘小秋, 李杰, 董宏丽, . 基于时频联合深度学习的地震数据重建[J]. 吉林大学学报(地球科学版), 2023, 53(1): 283-296.
[15] 刘志强, 黄磊, 李钢柱, 许磊, 李文宝. 崎岖海底对下伏水平地层反射波特征的影响[J]. 吉林大学学报(地球科学版), 2023, 53(1): 274-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!