吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (1): 283-296.doi: 10.13278/j.cnki.jjuese.20220037

• 地球探测与信息技术 • 上一篇    下一篇

基于时频联合深度学习的地震数据重建

张岩1,2, 刘小秋1,李杰1,董宏丽2,3   

  1. 1.东北石油大学计算机与信息技术学院,黑龙江大庆163000

    2.东北石油大学人工智能能源研究学院,黑龙江大庆163000

    3.黑龙江省网络化与智能控制重点实验室,黑龙江大庆163000

  • 收稿日期:2022-02-14 出版日期:2023-01-26 发布日期:2023-04-11

Seismic Data Reconstruction Based on Joint Time-Frequency Deep Learning

Zhang Yan 1,2, Liu Xiaoqiu1, Li Jie1, Dong Hongli2,3   

  1. 1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163000, Heilongjiang, China

    2. School of Artificial Intelligence and Energy Research, Northeast Petroleum University, Daqing 163000, Heilongjiang, China

    3. Key Laboratory of Networking and Intelligent Control of Heilongjiang Province,Daqing 163000, Heilongjiang, China


  • Received:2022-02-14 Online:2023-01-26 Published:2023-04-11

摘要:

地质条件和采集环境等因素的影响往往导致在地质勘探过程中无法获取完备的地震数据,对后续地质解释工作造成影响。随着计算机硬件的发展及基于卷积神经网络的地震数据处理方法的应用,越来越多的深度学习方法应用于地震数据规则化,当前此类方法通常局限在时域范围内处理数据,导致重建数据过于平滑,纹理细节信息缺失。本文提出一种联合时频域特征的卷积神经网络模型,通过在地震数据的时域和傅里叶域上进行联合约束,学习地震数据在时域和傅里叶域的多维度分布特征,重建欠采样地震数据,修正联合损失函数的权重,调整卷积神经网络学习的注意力;采用多级可调节的残差块构建卷积神经网络中间层,提高特征提取能力,根据任务的需要调节残差块数量,平衡网络的精度与效率。实验结果表明,本文提出的方法与双三次插值、基于块匹配的3D协同滤波、深超分辨率网络、增强深度学习超分辨率重建网络等方法对比,具有更好的细节保持效果和鲁棒性。

关键词: 地震数据规则化, 卷积神经网络, 时频联合, 深度学习, 傅里叶变换

Abstract:

Affected by geological conditions, acquisition environment and other factors, it is always impossible to obtain complete seismic data in the process of geological exploration, which seriously reduces the efficiency of subsequent geological interpretation work. With the development of computer GPU hardware and seismic data processing methods based on convolutional neural networks, more and more deep learning methods are applied to seismic data regularization. At present, such methods are usually limited to processing in the time domain, which often leads to too smooth reconstructed data and a lack of texture detail information. In this paper, a convolution neural network model with joint time-frequency domain characteristics is proposed. Through joint constraints in the time domain and Fourier domain of seismic data, the multi-dimensional distribution characteristics of seismic data in the time-frequency domain are extracted, and the weight of the joint loss function could be modified to adjust the attention of convolution neural network learning. The middle layer of the convolutional neural network is constructed by multi-level adjustable residual blocks to improve the ability of feature extraction. The number of residual blocks can be adjusted according to the needs of the task to balance the accuracy and efficiency of the network. Experiments show that the proposed method in this paper has a better detail retention effect and robustness than other methods.


Key words: seismic data regularization, convolutional neural network, time-frequency combination, deep learning, Fourier transform 

中图分类号: 

  • P631.4
[1] 刘 霞, 孙英杰. 基于融合残差注意力机制的卷积神经网络地震信号去噪[J]. 吉林大学学报(地球科学版), 2023, 53(2): 609-.
[2] 董旭日, 冯晅, 刘财, 田有, 李静, 王天琪, 王鑫, 衣文索. 基于DAS信号和CNN分类算法的人员运动轨迹监测方法[J]. 吉林大学学报(地球科学版), 2022, 52(3): 1004-1015.
[3] 李邦, 蒋川东, 王远, 田宝凤, 段清明, 尚新磊.

基于卷积神经网络的地下水磁共振数据随机噪声压制方法 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 775-784.

[4] 李忠潭, 薛林福, 冉祥金, 李永胜, 董国强, 李玉博, 戴均豪. 基于卷积神经网络的智能找矿预测方法:以甘肃龙首山地区铜矿为例[J]. 吉林大学学报(地球科学版), 2022, 52(2): 418-433.
[5] 熊越晗, 刘东燕, 刘东升, 王艳磊, 唐小山. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1597-1604.
[6] 王新民, 张超超. 基于深度学习的旧金山湾水质预测[J]. 吉林大学学报(地球科学版), 2021, 51(1): 222-230.
[7] 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!