J4

• 地球探测与信息技术 • 上一篇    下一篇

基于二次场二维起伏地形MT有限元数值模拟

赵广茂,李桐林,王大勇,李建平   

  1. 吉林大学 地球探测科学与技术学院,长春 130026
  • 收稿日期:2008-04-11 修回日期:1900-01-01 出版日期:2008-11-26 发布日期:2008-11-26
  • 通讯作者: 赵广茂

Secondary FieldBased Two-Dimensional Topographic Numerical Simulation in Magnetotellurics by Finite Element Method

ZHAO Guang-mao, LI Tong-lin, WANG Da-yong, LI Jian-ping   

  1. College of GeoExploration Science and Technology,Jilin University, Changchun 130026, China
  • Received:2008-04-11 Revised:1900-01-01 Online:2008-11-26 Published:2008-11-26
  • Contact: ZHAO Guang-mao

摘要: 通过计算二次场来进行二维大地电磁数值模拟;导出了二维大地电磁二次场的微分方程,利用有限单元法来解微分方程;对矩形网格进行对角线的二次剖分,更容易且真实地模拟起伏地形。对几个典型模型进行了试算,与前人总场法的计算结果做了比较,两者视电阻率曲线一致,证明本文算法是正确的;通过2个简单的算例说明复杂地表下2种极化模式的MT观测资料都有明显的异常,视电阻率在TM模式下比TE模式更易受地形影响,TE模式下视电阻率曲线形态与地形呈“正相关”,TM模式下反之。

关键词: 大地电磁场, 二次场, 起伏地形, 有限元法

Abstract: An efficient method has been presented which is named secondary field finite element method for two-dimentional magnetotelluric numerical modeling. The two-dimentional electromagnetic differential equations of secondary field have been derived, and the equations of secondary field can be solved by finite element method when the boundary conditions are simple; it is easier to simulate topographic earth by taking subdivision to the rectangle mesh. We have calculated several models and compared with previous researcher’s results using total field method. The results obtained indicated that the algorithm provided in this paper was correct. And it can be confirmed that the topographic abnormalities both in TE mode and TM mode are obvious. The apparent resistivity of H-polarization is affected by terrain more easily than that of E-polarization. The shape of apparent resistivity is positive correlation with terrain in TE mode, but that is opposite in TM mode.

Key words: magnetotelluric, secondary field, topographic, finite element method

中图分类号: 

  • P631.325
[1] 张波, 曹洪恺, 孙建孟, 张鹏云, 闫伟超. 稠油热采地层阵列感应测井响应特性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1277-1286.
[2] 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444.
[3] 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267.
[4] 顾观文,吴文鹂,李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1678-1686.
[5] 刘昌军,赵华,张顺福,丁留谦. 台兰河地下水库辐射井抽水过程的非稳定渗流场的有限元分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 922-930.
[6] 戴黎明,李三忠,楼达,索艳慧,刘鑫,余珊,周淑慧. 亚洲大陆主要活动块体的现今构造应力数值模拟[J]. 吉林大学学报(地球科学版), 2013, 43(2): 469-483.
[7] 年廷凯,张克利,刘红帅,徐海洋. 基于强度折减法的三维边坡稳定性与破坏机制[J]. 吉林大学学报(地球科学版), 2013, 43(1): 178-185.
[8] 刘海飞, 柳建新, 郭荣文, 邓小康, 阮百尧. 起伏地形三维激电连续介质模型快速反演[J]. J4, 2011, 41(4): 1212-1218.
[9] 刘红帅, 年廷凯, 万少石. 三维边坡稳定性分析中的边界约束效应[J]. J4, 2010, 40(3): 638-644.
[10] 戴文亭,陈星,张弘强. 粘性土的动力特性实验及数值模拟[J]. J4, 2008, 38(5): 831-0836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!