吉林大学学报(地球科学版)

• 地质与资源 • 上一篇    下一篇

草桃背矿床白垩纪橄榄玄粗岩与铀成矿关系

张运涛1,2,裴荣富1,于波1,陈永飞2,杨东生3,邱小平4   

  1. 1.中国地质科学院矿产资源研究所,北京100037;
    2.江西省核工业地质局二六四大队,江西 赣州341000;
    3.中国科学院广州地球化学研究所,广州510640;
    4.中国地质科学院地质研究所,北京100037
  • 收稿日期:2012-12-14 出版日期:2013-09-26 发布日期:2013-09-26
  • 作者简介:张运涛(1967-),男,博士研究生,教授级高级工程师,主要从事矿床学、大比例尺成矿预测研究,E-mail:zhangyuntao264@163.com
  • 基金资助:

    国家科技部支撑计划项目(2009BAB43B04);江西省国土资源厅项目(20110211)

Relation Between Cretaceous Shoshonite and Uranium Metallogenesis in Caotaobei Uranium Deposit

Zhang Yuntao1,2, Pei Rongfu1,Yu Bo1, Chen Yongfei2, Yang Dongsheng3, Qiu Xiaoping4   

  1. 1.Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing100037, China;
    2.Geologic Party No.264, Jiangxi Nuclear Industrial Geological Bureau , Ganzhou341000, Jiangxi,China;
    3.Guangzhou Institute of Geochemistry of Chinese Academy of Sciences, Guangzhou510640, China
  • Received:2012-12-14 Online:2013-09-26 Published:2013-09-26

摘要:

赣南会昌断陷盆地沿石城—寻乌深断裂分布一条白垩纪橄榄玄粗岩系列的火山岩带。草桃背大型铀矿床内出露大富足岩体中—粗粒黑云母花岗岩及早白垩世晚期到晚白垩世早期橄榄玄粗岩系列火山岩。大富足花岗岩体岩石w(SiO2)平均为74.67%,碱总量(w(K2O+Na2O))平均为7.99%,w(K2O)>w(Na2O),w(CaO)平均为0.54%,w(Al2O3)>w(CaO+Na2O+K2O),属高钾钙碱性岩石系列。橄榄玄粗系列火山岩岩石w(SiO2)为45.78 %~59.78 %,w(K2O+Na2O)平均为7.37%,K2O/Na2O平均为1.02,w(TiO2)平均为0.86%, 全铁质量分数平均为7.09%,属偏碱性橄榄玄粗质火山岩类。草桃背铀矿床赋矿岩性为橄榄玄粗岩、碎裂花岗岩及隐爆角砾岩。赋存于碎裂花岗岩及隐爆角砾岩中铀矿石化学成分,与围岩花岗岩成分相似;赋存于橄榄玄粗岩中铀矿石,Fe2O3+Fe2O、CaO、MgO不同程度地带出,w(SiO2)明显增高,表明橄榄玄粗岩在成矿过程中,通过输出大量Fe、Mg、Ca等阳离子而促进铀离子从含矿溶液中沉淀。草桃背矿床的铀矿化与充填在草桃背火山口的橄榄玄粗岩关系密切,在时间上相近、在空间上相伴、在成生上相关,受橄榄玄粗岩岩浆系列热动力的影响,铀元素发生活化、转移或物质交换而成矿,成岩成矿时代属早白垩世晚期到晚白垩世早期。从草桃背铀矿床岩石学、地球化学及赋矿特征入手,总结了铀成矿是富铀矿的花岗岩基底、北东向构造及火山作用结合的产物,橄榄玄粗岩提供热源,并指出半岭、上寮、小富足等地段是寻找草桃背式铀矿床的极有利地区。

关键词: 橄榄玄粗岩, 铀矿床, 火山口, 草桃背, 火山岩

Abstract:

The Huichang faulted basin is located in southern Jiangxi, where appear shoshonite rock series of Cretaceous along Shicheng-Xunwu deep fault. The shoshonitic rocks host a variety of significant mineral deposits, such as iron, copper, gold, lead, zinc, silver and uranium deposits in southeastern China, including hydrothermal uranium deposits at Xiangshan and Caotaobei respectively in northeastern and southern Jiangxi Province. The Caotaobei deposit lies in the Hecaokeng district (ore field). The host rocks for ore of the Caotaobei uranium deposit are primarily medium-to coarse-grained porphyritic biotite monzogranites of the Dafuzu intrusion and Cretaceous shoshonitic volcanic rocks. The Dafuzu pluton corresponds to calc-alkaline S-type granites, with high content of SiO2 (averaging 74.67%), strongly peraluminous ((Al2O3)>(CaO+Na2O+K2O)), high total alkalis (average (K2O+Na2O) content 7.995%), high content of CaO content (average CaO content 0.54%). The shoshonite series are characterized by: rich SiO2 (varying 45.78 % to 59.78 %),high K2O/Na2O (average 1.02), high total alkalis (average (K2O+Na2O) content 7.37%),low TiO2 content (average 0.86%), low iron content (average ∑Fe 7.09%). Uranium mineralization occurs predominantly as veinlets and massive and disseminated replacement ores in shoshonites, granite and cryptoexplosive rocks, among them, the chemical composition of uranium ore in granite and in cryptoexplosion rocks are similar with host granite. Whereas the Fe2O3+Fe2O,CaO and MgO leached out and SiO2 enriched in the ores hosted in the shoshonitic volcanic rocks, indicating U precipitated from uraniferous solution by cations (such as Fe,Mg,Ca) leached out during shoshonite series metallogenesis. Uranium mineralization within Caotaobei deposit are simultaneously with shoshonitic rocks in the Caotaobei crater, and they are closely related both in space and in genesis. Affected by thermal activities from shoshonitic magma, uranium elements activated and transferred to form uranium ores at the late stage of Early Cretaceous to early stage of Late Cretaceous. Based on petrographic, geochemical and ore-host features studies, an integrated model of the entire mineralized system is summarized, in which uranium mineralization is related to cryptoexplosive breccias caused by overpressured fluids exsolved from crystallizing shoshonitic magma below the Caotaobei caldera and simultaneously leached ore metals from the host volcanic rocks and the caldera basement (the Dafuzu granite batholith). Several potential targets such as Banling, Shangliao, Xiaofuzu are delineated for Caotaobei type uranium deposit.

Key words: shoshonite, uranium deposit, volcanic crater, Caotaobei, volcanic rocks

中图分类号: 

  • P618.13
[1] 王运, 胡宝群, 王倩, 李佑国, 孙占学, 郭国林. 邹家山铀矿床伴生重稀土元素的赋存特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 719-735.
[2] 舒晴, 朱晓颖, 高维, 李瑞, 尹航. 三塘湖盆地航磁异常特征及油气远景预测[J]. 吉林大学学报(地球科学版), 2018, 48(2): 451-460.
[3] 刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 285-297.
[4] 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306.
[5] 孟恩, 王朝阳, 刘超辉, 施建荣, 李艳广. 辽东半岛东南部南辽河群变质火山岩的时代、成因及其对区域构造演化的制约[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1589-1619.
[6] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
[7] 刘晨, 孙景贵, 邱殿明, 古阿雷, 韩吉龙, 孙凡婷, 杨梅, 冯洋洋. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1138-1158.
[8] 吴迪, 庄廷新, 田立, 刘晓东, 李伟民. 辽东铀成矿带黄沟铀矿床地质特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(2): 452-463.
[9] 李永刚. 松南气田火山岩致密储层分类及有利目标潜力评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 344-354.
[10] 张兴洲, 刘洋, 曾振, 张宏涛, 崔维龙. 大兴安岭北部±130 Ma火山岩的地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 1-13.
[11] 曲长胜, 邱隆伟, 李文涛, 师政, 王巍. 渤海湾盆地潍北凹陷孔三段中基性火山岩储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1284-1296.
[12] 张海洪, 许文良, 王枫, 曹花花. 吉林中部小蜂蜜顶子组火山岩的形成时代及其地质意义:锆石U-Pb年代学和Hf同位素组成证据[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1418-1429.
[13] 王璞珺, 缴洋洋, 杨凯凯, 张增宝, 边伟华. 准噶尔盆地火山岩分类研究与应用[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1056-1070.
[14] 尹志刚, 王文材, 张跃龙, 王阳, 韩宇, 曹忠强, 郑贝. 伊勒呼里山中生代火山岩:锆石U-Pb年代学及其对岩浆事件的制约[J]. 吉林大学学报(地球科学版), 2016, 46(3): 766-780.
[15] 陈斌, 李壮, 王家林, 张璐, 鄢雪龙. 辽东半岛~2.2 Ga岩浆事件及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(2): 303-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!