吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 282-292.doi: 10.13278/j.cnki.jjuese.201501302

• 地球探测与信息技术 • 上一篇    下一篇

浅水域可控源海洋电磁测量中空气波的渐近表达与波场分离方法

沈金松1,2,3, 汪轩1, 魏帅帅1, 李曼1   

  1. 1. 中国石油大学(北京)地球物理与信息工程学院, 北京 102249;
    2. 油气资源与探测国家重点实验室, 北京 102249;
    3. 中国石油集团公司物探重点实验室, 北京 102249
  • 收稿日期:2014-04-06 发布日期:2015-01-26
  • 作者简介:沈金松(1964), 男, 研究员, 博士, 主要从事地球物理测井及电磁探测理论方法和应用研究, E-mail:shenjinsong@cup.edu.cn
  • 基金资助:

    国家自然科学基金项目(41374141);国家"973"计划项目(2013CB228605)

Methods of Air Wave Approximation and Decomposition for Marine Controlled Source Electromagnetic Measurements in Shallower Water Domain

Shen Jinsong1,2,3, Wang Xuan1, Wei Shuaishuai1, Li Man1   

  1. 1. Faculty of Geophysics and Informatics, China Petroleum University(Beijing), Beijing 102249, China;
    2. State Key Laboratory of Petroleum Resource and Prospecting, Beijing 102249, China;
    3. CNPC Key Lab of Geophysical Exploration, Beijing 102249, China
  • Received:2014-04-06 Published:2015-01-26

摘要:

可控源海洋电磁(MCSEM)勘探中空气波对海底电磁响应的影响已为业界所重视, 它是由水平电偶极子源发射的电磁信号沿空气-海水界面传播与来自海底地层的有效信号相互作用产生的。在浅水域勘探时, 空气波淹没来自地层的有效信号, 使浅水域MCSEM实现油气层识别产生困难。基于层状介质模型, 采用电磁场的模式分解理论导出了半空间电阻率模型的空气波表达式, 利用该式将空气波在海水层的传播近似用海水-空气界面与海底地层之间的多次鸣震表达。结合源和接收器两边电磁场的传播特征, 导出了有限水深时空气波近似关系, 用于近似模拟空气波响应。为了对比不同方法压制空气波的效果, 基于上行波场和下行波场的分解方法, 获得了含油气高阻储层上上行波的异常幅度增大数倍的结果, 显示了波场分解方法压制空气波的良好效果。最后, 利用不含油气层的背景模型和含油气储层模型电磁响应的数值模拟结果, 比较空气波渐近表达和波场分离2种空气波压制方法可知:对于水平层状模型后者效果更好;前者可适用于崎岖海底地层的数据处理, 后者只适用于水平海底地层。

关键词: 浅水域, 海洋可控源电磁勘探, 鸣震近似, 波场分离, 空气波压制

Abstract:

In marine controlled-source electromagnetic (MCSEM) exploration, the influence on the EM response of the airwave has been paid great attention by the industry and the air wave is one kind of EM signal from the horizontal electric dipole (HED) source that is reflected from or travels along the air-sea interface and return back to receivers. In shallow water domains, the airwave dominates over the effective signal from seabed sediments, and makes it very difficult to identify the hydrocarbon reservoirs. On the basis of the layer model, we have derived airwave expression of half space resistivity model by using the mode decomposition theory of the EM field and the air wave in the sea water layer is approximately expressed as a series of wave reverberations that travel down and backward between the sea surface and the seabed. According to the propagations of EM field near sources and receivers, we have obtained airwave expression of a finite water layer. In order to compare the effectiveness of the various air wave mitigation methods, we have adopted the decomposition method of EM fields into upgoing and downgoing components, and have acuired larger anomaly of several times than that of the raw EM field above the resistive formation, and indicated the favorable effect of airwave attenuation by using of wave separation. Finally, simulation results of electromagnetic responses from different background and reservoir models have been used to check the effectiveness and adaptability of the two air wave mitigation methods of wave reverberations approximation and wave field decomposition, numerical results show that for model of horizontal layers, the latter is more effective, however, the former is applicable to rugged sea floor formation and the latter only fits for horizontal layers.

Key words: shallower water domain, marine controlled-source electromagnetic exploration, wave reverberations approximation, air wave separation, air wave mitigation

中图分类号: 

  • P631.3

[1] Constable S, Weiss C J. Mapping Thin Resistors and Hydrocarbons with Marine EM Methods:Insights from 1D Modeling[J]. Geophysics, 2006, 71(2):43-51.

[2] Eidesmo T, Ellingsrud S, MacGregor L M, et al. Sea Bed Logging (SBL):A New Method for Remote and Direct Identification of Hydrocarbon Filled Layers in Deepwater Areas[J]. First Break, 2002, 20(3):144-152.

[3] Ellingsrud S, Eidesmo T, Johansen S, et al. Remote Sensing of Hydrocarbon Layers by Sea Bed Logging-SBL:Results from a Cruise Offshore Angola[J]. The Leading Edge, 2002, 21(10):972-982.

[4] MacGregor L M, Thomkins M, Andreis D. Electromagnetic Surveying for Hydrocarbon Reservoirs:U K, 20050077902[P]. 2005-04-14.

[5] Um E S, Alumbaugh D L. On the Physics of the Marine Controlled-Source Electromagnetic Method[J]. Geophysics, 2007, 72(2):13-26.

[6] Chave A D, Constable S C, Edwards R N. Electrical Exploration Methods for the Seafloor[C]//Nabighian M N.Electromagnetic Methods in Applied Geophy-sics. Tulsa:Society of Exploration Geophysicists, 1991:931-966.

[7] Chen J, Alumbaugh D L. Three Methods for Mitigating Airwaves in Shallow Water Marine Controlled-Source Electromagnetic Data[J]. Geophysics, 2011, 76(2):89-99.

[8] Amundsen L, Løseth L, Mittet R, et al. Decomposition of Electromagnetic Fields into Up Going and Down Going Components[J].Geophysics, 2006, 71(5):211-223.

[9] Constable S. Ten Years of Marine CSEM for Hydrocarbon Exploration[J]. Geophysics, 2010, 75(5):7567-7581.

[10] Maaø F A, Nguyen A K. Enhanced Subsurface Response for Marine CSEM Surveying[J]. Geophysics, 2010, 75(3):7-10.

[11] Chave A D, Cox C S. Controlled Electromagnetic Sources for Measuring Electrical Conductivity Beneath the Oceans:1:Forward Problem and Model Study[J]. Journal of Geophysical Research, 1982, 87(B7):5327-5338.

[12] Wait J R. The Electromagnetic Fields of a Horizontal Dipole in the Presence of a Conducting Half-Space[J]. Canadian Journal of Physics, 1961, 39(7):1017-1027.

[13] Baàos A. Dipole Radiation in the Presence of a Conducting Half-Space[M]. Oxford:Pergamon Press Inc, 1966.

[14] Bannister P R. New Simplified Formulas for ELF Sub-surface-to-Subsurface Propagation[J]. IEEE Journal of Oceanic Engineering, 1984, 9(3):154-163.

[15] King R W P, Owens M, Wu T T. Lateral Electromagnetic Waves:Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing[M]. Newyork:Springer-Verlag Inc, 1992.

[16] Løseth L O, Amundsen L, Jenssen A J K. A Solution to the Airwave-Removal Problem in Shallow-Water Marine EM[J]. Geophysics, 2010, 75(5):37-42.

[17] Ziolkowski A, Wright D. Removal of the Airwave in Shallow Marine Transient EM Data[C]//77th Annual International Meeting. San Antonio:Society of Exploration Geophysicists, 2007:534-538.

[18] Lu X, Srnka L J, Carazzone J J. Method for Removing Air Wave Effect from Offshore Frequency Domain Controlled-Source Electromagnetic Data:U S, O2005/010 560A1[P].2005-10-20.

[19] 殷长春, 刘云鹤, 翁爱华, 等, 海洋可控源电磁法空气波研究现状及展望[J]. 吉林大学学报:地球科学版, 2012, 42(5), 1506-1520. Yin Changchun, Liu Yunhe, Weng Aihua, et al. Research on Marine Controlled Source Electromagnetic Method Airwave[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(5):1506-1520.

[20] 沈金松, 詹林森, 王鹏飞, 等.可控源海洋电磁勘探中空气波影响的理论分析和数值模拟[J]. 地球物理学报, 2012, 55(7):2473-2488. Shen Jinsong, Zhan Linsen, Wang Pengfei, et al. Theoretic Analysis and the Numerical Simulation of the Effects of the Air Wave Interaction on the Marine Controlled Source Electromagnetic Exploration[J]. Chinese Journal of Geophysics, 2012, 55(7):2473-2488.

[21] 刘长胜, 林君. 海底表面磁源瞬变响应建模及海水影响分析[J]. 地球物理学报, 2006, 49(6):1891-1898. Liu Changsheng, Lin Jun. Transient Electromagnetic Response Modeling of Magnetic Source on Seafloor and the Analysis of Seawater Effect[J]. Chinese Journal of Geophysics, 2006, 49(6):1891-1898.

[22] Nordskag J I, Amundsen L, Ursin B. Decomposition of Marine Electromagnetic Fields into TE and TM Modes for Enhanced Interpretation[C]//EGM International Workshop.[S.l]:EGM, 2007.

[23] Ward S H, Hohmann G W. Electromagnetic Theory for Geophysical Applications[C]//Ward H S, Hohmann W G. Electromagnetic Methods in Applied Geophysics.[S.l]:SEG, 1988:131-311.

[24] Weiss C J. The Fallacy of the Shallow-Water Problem in Marine CSEM Exploration[J]. Geophysics, 2007, 72(6):93-97.

[25] Løseth L O, Pedersen H M, Schaug-Pettersen T, et al. A Scaled Experiment for the Verification of the Seabed Logging Method[J]. Journal of Applied Geophysics, 2007, 64(3/4):47-55.

[26] Andréis D, MacGregor L. Controlled-Source Electromagnetic Sounding in Shallow Water:Principles and Applications[J]. Geophysics, 2008, 73(1):21-32.

[27] Ziolkowski A. Developments in the Transient Electromagnetic Method[J]. First Break, 2007, 25(6):99-106.

[28] Mittet R. Normalized Amplitude Ratios for Frequency-Domain CSEM in Very Shallow Water[J]. First Break, 2008, 26(11):47-54.

[29] Wapenaar K, Slob E, Snieder R. Seismic and Electromagnetic Controlled-Source Interferometry in Dissipative Media[J]. Geophysical Prospecting, 2008, 56(3):419-434.

[1] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[2] 刘新彤, 刘四新, 孟旭, 傅磊. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 474-482.
[3] 王焱, 鹿琪, 刘财, 佘松盛, 刘四新. 利用GPR天线-目标极化的瞬时属性分析方法探测LNAPL污染土壤[J]. 吉林大学学报(地球科学版), 2018, 48(2): 491-500.
[4] 殷长春, 卢永超, 刘云鹤, 张博, 齐彦福, 蔡晶. 多重网格准线性近似技术在三维航空电磁正演模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(1): 252-260.
[5] 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270.
[6] 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561.
[7] 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267.
[8] 刘永亮, 李桐林, 朱成, 关振伟, 苏晓波. 基于拟线性积分方程法的三维电磁场数值模拟精度分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1268-1277.
[9] 陈帅, 李桐林, 张镕哲. 考虑激发极化效应的瞬变电磁一维Occam反演[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1278-1285.
[10] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[11] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[12] 翁爱华, 刘佳音, 贾定宇, 杨悦, 李建平, 李亚彬, 赵祥阳. 有限长导线源频率测深有限内存拟牛顿一维反演[J]. 吉林大学学报(地球科学版), 2017, 47(2): 597-605.
[13] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[14] 罗天涯, 熊彬, 蔡红柱, 陈欣, 刘云龙, 兰怀慷, 李祖强, 梁卓. 复杂电性结构大地电磁二维响应特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 215-223.
[15] 李世文, 殷长春, 翁爱华. 时间域航空电磁电阻率和磁导率全时反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1830-1836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!