吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (4): 1180-1188.doi: 10.13278/j.cnki.jjuese.201504204

• 地质工程与环境工程 • 上一篇    下一篇

工质变物性对EGS热开采过程影响的数值模拟

曹文炅, 陈继良, 蒋方明   

  1. 中国科学院可再生能源重点实验室/中国科学院广州能源研究所先进能源系统实验室, 广州 510640
  • 收稿日期:2014-10-29 发布日期:2015-07-26
  • 作者简介:曹文炅(1983),男,助理研究员,博士,主要从事多孔介质传热传质及增强型地热系统数值模拟方面的研究,E-mail:caowj@ms.giec.ac.cn.
  • 基金资助:

    国家"863"计划项目(2012AA052802)

Effects of Variable Properties of Heat Transmission Fluid on EGS Heat Extraction: A Numerical Study

Cao Wenjiong, Chen Jiliang, Jiang Fangming   

  1. Laboratory of Advanced Energy System, CAS/ Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, CAS, Guangzhou 510640, China
  • Received:2014-10-29 Published:2015-07-26

摘要:

增强型地热系统(EGS)热开采过程中循环工质的温度和压力会经历较大范围的变化,这会造成循环工质的热物性变化,从而影响流体工质的输运和岩石-流体热交换;数值模拟EGS热开采过程,预测EGS的寿命、出力等性能指标有必要考虑循环工质的热物性变化.笔者在EGS热开采过程三维数值模拟中考虑水和超临界二氧化碳的变物性,实现了热流双向耦合.针对水EGS分析了各物性变化对EGS采热性能的影响,并对变物性条件的水和超临界二氧化碳EGS的采热性能进行了对比研究.结果表明:工质在密度影响下开采寿命为9.0 a在密度和比定压热容共同影响下的开采寿命为7.5 a,说明密度和比定压热容越大则EGS开采寿命越短;在黏度系数影响下的开采寿命为18.0 a,说明黏度系数越大则EGS开采寿命越长;导热系数则对EGS采热性能无明显影响.注入压力一定的条件下以水为工质的EGS具有较长寿命,但相同时刻的质量流率和热开采率低于以临界二氧化碳为工质的EGS.

关键词: 增强型地热系统, 局部非热平衡, 变物性, 超临界二氧化碳

Abstract:

The large changes to the temperature and pressure associated with EGS heat exploitation will lead to pronounced changes to the thermo-physical properties of the heat transmission fluid, which will in turn affect the fluid flow and heat transportation inside the EGS subsurface system. It is necessary to establish a variable thermo-physical property EGS model to simulate the EGS heat extraction process and to predict the performance of EGS including its lifetime and capacity. The present work is extended to a previously developed three dimensional EGS heat extraction model with considering the local thermal non-equilibrium between the rock matrix and fluid flowing in the fractures in the porous reservoir, by introducing a module modeling with the property variation of water and supercritical carbon dioxide (SCCO2). The model with fully coupled thermal and hydraulic actions is used to investigate the impacts of thermo-physical properties on the water-EGS heat extraction. It is found that the lifetime of the EGS is 9.0 a under the density effects and 7.5 a under the specific heat capacity effects, indicating that the larger the density and the specific heat capacity of the working fluid possessed are, the shorter the EGS's lifetime is. Under the viscosity effects, the lifetime of the EGS extends to 18.0 a, meaning that the larger the viscosity of the working fluid is, the longer the EGS can be operated. However, the thermal conductivity of working fluid hardly has any effect on the EGS performance. Specially, we compare the heat extraction performance of water-EGS and SCCO2-EGS. Under a fixed injection pressure, the lifetime of water-EGS is longer than that of SCCO2-EGS; but the extraction ratio of the former is lower than the latter at the same time instant mainly due to the much higher mass flow rate of the latter in the EGS operation.

Key words: enhanced geothermal systems, local thermal non-equilibrium, variable properties, supercritical carbon dioxide

中图分类号: 

  • TK529

[1] Tester J W, Anderson B J, Batchelor A S, et al. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century[R]. Cambridge: Massachussets of Institute of Technology, 2006.

[2] Yang Y, Yeh H. Modeling Heat Extraction From Hot Dry Rock in a Multi-Well System[J]. Applied Thermal Engineering, 2009, 29: 1676-1681.

[3] Gelet R, Loret B, Khalili N. A Thermo-Hydro-Mechanical Coupled Model in Local Thermal Non-Equilibrium for Fractured HDR Reservoir with Double Porosity[J]. Journal of Geophysical Research, 2012, 117: 7205-7228.

[4] Kalinina E, McKenna S, Hadgu T, et al. Analysis of the Effects of Heterogeneity on Heat Extraction in an EGS Represented with the Continuum Fracture Model[C]//Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University. Stanford:CA, 2012:436-445.

[5] Jiang F M, Luo L, Chen J L. A Novel Three-Dimensional Transient Model for Subsurface Heat Exchange in Enhanced Geothermal Systems[J]. International Communications in Heat and Mass Transfer, 2013, 41: 57-62.

[6] Shaik A R, Rahman S S, Tran N H, et al. Numerical Simulation of Fluid-Rock Coupling Heat Transfer in Naturally Fractured Geothermal System[J]. Applied Thermal Engineering, 2011, 31: 1600-1606.

[7] Pruess K. Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid:A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon[J]. Geothermics, 2006, 3: 51-67.

[8] Pruess K. On Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid[J]. Applied Thermal Engineering, 2008, 49: 1446-1454.

[9] 陈继良, 蒋方明. 增强型地热系统热开采性能的数值模拟分析[J]. 可再生能源, 2013, 31(12): 111-117. Chen Jiliang, Jiang Fangming. A Numerical Study on Heat Extraction Performance of Enhanced Geothermal Systems[J]. Renewable Energy Resources, 2013, 31(12): 111-117.

[10] 陈继良, 罗良, 蒋方明.热储周围岩石热补偿对增强型地热系统采热过程的影响[J]. 计算物理, 2013, 30(6): 862-870. Chen Jiliang, Luo Liang, Jiang Fangming. Thermal Compensation of Rocks Encircling Heat Reservoir in Heat Extraction of Enhanced Geothermal System[J]. Chinese Journal of Computational Physics, 2013, 30(6): 862-870.

[11] 陈继良, 蒋方明, 罗良. 增强型地热系统地下渗流场的模拟和分析[J]. 计算物理, 2013, 30(6): 871-878. Chen Jiliang, Jiang Fangming, Luo Liang. Numerical Simulation of Down-Hole Seepage Flow in Enhanced Geothermal System[J]. Chinese Journal of Computational Physics, 2013, 30(6): 871-878.

[12] Jiang F M, Chen J L, Huang W B, et al. A Three-Dimensional Transient Model for EGS Subsurface Thermo-Hydraulic Process[J]. Energy, 2014, 72: 300-310.

[13] The International Association for the Properties of Water and Steam. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam[R]. Lucerne:International Association for the Properties of Water and Steam, 2007.

[14] The International Association for the Properties of Water and Steam. Lamda Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance[R]. Plzeň:International Association for the Properties of Water and Steam, 2011.

[15] The International Association for the Properties of Water and Steam. Viscosity Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance[R]. Berlin:International Association for the Properties of Water and Steam, 2008.

[16] 雷宏武, 李佳琦, 许天福, 等. 鄂尔多斯盆地深部咸水层二氧化碳地质储存热-水动力-力学(THM)耦合过程数值模拟[J]. 吉林大学学报:地球科学版, 2015, 45(2): 552-563. Lei Hongwu,Li Jiaqi,Xu Tianfu, et al. Numerical Simulation of Coupled Thermal-Hydrodynamic-Mechanical (THM) Processes for CO2 Geological Sequestration in Deep Saline Aquifers at Ordos Basin, China[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(2): 552-563.

[17] Heidaryan E, Jarrahian A. Modified Redlich-Kwong Equation of State for Supercritical Carbon Dioxide[J]. The Journal of Supercritical Fluids, 2013, 81: 92-98.

[18] Span R, Wagner W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple Point Temperature to 1 100 K at Pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25: 1509-1596.

[19] Jarrahian A, Heidaryan E. A Novel Correlation Approach to Estimate Thermal Conductivity of Pure Carbon Dioxide in the Supercritical Region[J]. The Journal of Supercritical Fluids, 2012, 64:39-45.

[20] Heidaryan E, Hatami T H, Rahimi M, et al. Viscosity of Pure Carbon Dioxide at Supercritical Region: Measurement and Correlation Approach[J]. The Journal of Supercritical Fluids, 2011, 56: 144-151.

[1] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[2] 许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!