吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (5): 1352-1364.doi: 10.13278/j.cnki.jjuese.201505109

• 地质与资源 • 上一篇    下一篇

改进后的烃类流体包裹体热力学模拟方法及其在油气成藏研究中的应用

毛毳1,2, 陈勇1, 周瑶琪1, 葛云锦3, 王有智4, 周振柱5   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266555;
    2. 东北石油大学地球科学学院, 黑龙江 大庆 163318;
    3. 陕西延长石油(集团)研究院, 西安 710075;
    4. 中国石油大庆油田勘探开发研究院, 黑龙江 大庆 163000;
    5. 山东科技大学地质科学与工程学院, 山东 青岛 266590
  • 收稿日期:2014-10-27 发布日期:2015-09-26
  • 作者简介:毛毳(1984),女,博士,主要从事储层地质学的研究,E-mail:maocui_2008@163.com。
  • 基金资助:

    国家"973"计划项目(2011CB201001);国家重大科技专项(2011ZX05014);国家自然科学基金项目(40772082,41172111);中央高校基本科研业务专项基金项目(10CX05004A)

Improved Simulation Method of Petroleum Inclusions Thermodynamics and Its Application in Hydrocarbon Accumulations

Mao Cui1,2, Chen Yong1, Zhou Yaoqi1, Ge Yunjin3, Wang Youzhi4, Zhou Zhenzhu5   

  1. 1. School of Geosciences, China University of Petroleum, Qingdao 266555, Shandong, China;
    2. School of Geosciences, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    3. Research Institute of Shanxi Yanchang Petroleum CO., LTD., Xi'an 710075, China;
    4. Exploration and Development Research Institute of Daqing Oilfield Company, PetroChina, Daqing 163000, Heilongjiang, China;
    5. College of Geological Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2014-10-27 Published:2015-09-26

摘要:

烃类包裹体成分和热力学行为非常复杂,准确恢复捕获条件一直是一个难点。以往的研究一般用盐水包裹体的均一温度来代替捕获温度,但是均一温度和捕获温度之间有误差,用均一温度代替捕获温度不够准确,因此需要校正。笔者对烃类和同期盐水包裹体的均一温度先校正后模拟,减少了烃类包裹体热力学模拟误差;通过对储层流体包裹体进行显微荧光、显微测温、显微共聚焦激光扫描、显微傅里叶变换红外光谱等实验分析,得到流体包裹体均一温度(90~170 ℃)、盐度(0.71%~11.1%)、气液比(7%~9%)、CH4的摩尔分数(20%~25%)和CH2/CH3(4~8)等参数;结合盐水包裹体均一温度校正曲线,利用FIT-Oil软件进行PIT(烃类包裹体热力学)模拟,恢复储层包裹体的捕获压力和捕获温度,提高了包裹体捕获条件获得的精度。为了验证此方法的准确性,以人工合成包裹体作为标准样品,获得盐水包裹体均一温度与捕获温度关系校正曲线,参数校正后利用软件计算出的捕获温压与实验设定的温压条件吻合良好。以东营凹陷丰深10井沙四下亚段储层包裹体为实例,进行了古温压和成藏期的估算,与前人通过其他方法得出的结论一致,证实了捕获条件获得的准确性。

关键词: 烃类包裹体, 盐水包裹体, 合成包裹体, 捕获温度, 捕获压力, PIT模拟

Abstract:

Composition and thermodynamic behavior of hydrocarbon are complicated; so it is difficult to recover its trapping conditions. In this paper,by ways of petroleum inclusions and the corresponding period aqueous inclusions homogenization temperature correction before simulation, we reduced the petroleum inclusions thermodynamic error, increased the accuracy of trapping conditions. Through microthermometry,fluorescence spectroscopy,confocal scanning laser microscopy, and Fourier transform infrared spectrum analysis we obtained the homogenization temperature(90-170 ℃),salinity(0.71%-11.1%),gas and fluid ratio(7%-9%),and mole percent content of CH4(20%-25%),CH2/CH3(4-8)of reservoir fluid inclusions. Based on these thermodynamic parameters,using PIT simulated data of FIT-Oil and aqueous inclusions homogenization temperature calibration curve,we recovered the trapping pressure(22-27 Mpa) and temperature(125-157 ℃)of reservoir inclusions. By taking the synthetic hydrocarbon inclusion as a standard sample, we applied the PIT to the reservoir fluid inclusions of Fengshen 10 well in Dongying sag Es4 x to estimate the original temperature, pressure, and the accumulation period;by which the accuracy of the PIT method is verified. Because of its high effectivity that determine period of hydrocarbon accumulation, the method can be applied widely in various oil fields.

Key words: hydrocarbon inclusion, aqueous inclusions, synthetic inclusions, trapping temperature, trapping pressure, PIT simulation

中图分类号: 

  • P618.13

[1] Roedder E. Fluid Inclusions[C]//Mineralogical Society of America. Reviews in Mineralogy. Washington: [s. n.], 1984: 646.

[2] Goldstein R H, Reynolds T J. Systematics of Fluid Inclusions in Diagenetic Minerals[C]// SEM Short Course 31. Tulsa: Society of Sedimentary Geology, 1994: 199.

[3] 卢焕章,范宏瑞,倪培,等. 流体包裹体[M]. 北京:科学出版社,2004. Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusion[M]. Beijing: Science Press, 2004.

[4] 王力,潘忠翠,孙丽伟. 山东莱州新城金矿床流体包裹体[J]. 吉林大学学报:地球科学版,2014,44(4):1166-1176. Wang Li, Pan Zhongcui, Sun Liwei. Fluid Inclusions of the Xincheng Gold Deposit of Laizhou City in Shangdong Province[J]. Journal of Jilin Unibersity: Earth Science Edition, 2014, 44(4): 1166-1176.

[5] Parnell J, Carey P F, Monson B. Fluid Inclusion Constraints on Temperatures of Petroleum Migration from Authigenic Quartz in Bitumen Veins[J]. Chemical Geology, 1996, 129(3/4): 217-226.

[6] Conliffe J, Blamey N F, Feely M, et al. Hydrocarbon Migration in the Porcupine Basin, Offshore Ireland: Evidence from Fluid Inclusion Studies[J]. Petroleum Geoscience, 2010, 16(1): 67-76.

[7] 王飞宇,师玉雷,曾花森,等.利用油包裹体丰度识别古油藏和限定成藏方式[J].矿物岩石地球化学通报,2006,25(1):12-18. Wang Feiyu, Shi Yulei, Zeng Huasen, et al. To Identify Paleo-Oil Reservoir and to Constrain Petroleum Charging Model Using the Abundance of Oil Inclusions[J]. Bulletin of Mineralogy, Petrology and Geoche-mistry, 2006, 25(1):12-18.

[8] Cao J, Wang X, Sun P A, et al. Grains Containing Oil Inclusions in Different Hydrocarbon Production and Show Types of Sandstone Reservoirs from the Central Junggar Basin, Northwest China[J]. Acta Geologica Sinica, 2011, 85(5):1163-1172.

[9] 平宏伟,陈红汉,Thiéry R. 石油包裹体热动力学模拟古压力改进:饱和压力预测和体积校正[J]. 地球科学:中国地质大学学报,2013,38,(1):144-155. Ping Hongwei, Chen Honghan, Thiéry R. Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturation Pressure Prediction and Volume Calibration[J]. Earth Science: Journal of China University of Geosciences, 38(1): 143-155.

[10] Aplin A C,Macleod G,Larter S R,et al. Combined Use of Confocal Laser Microscopy and PVT Simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions[J]. Marine and Petrolum Geology, 1999, 16: 97-109.

[11] Aplin A C,Larter S R,Bigge M A, et al. PVTX History of the North Sea's Judy Oilfield[J]. Journal of Geochemical Exploration, 2000,(69/70): 641-644.

[12] 刘斌. 烃类包裹体热动力学[M]. 北京:科学出版社,2005. Liu Bin. Thermodynamics of Hydrocarbon Inclusions[M]. Beijing: Science Press, 2005.

[13] 王金志,杨少武,蒋森堡,等. 流体包裹体热动力学模拟技术的古压力恢复方法及应注意的问题[J]. 中国石油勘探,2008(1):44-47. Wang Jinzhi, Yang Shaowu, Jiang Senbao, et al. The Method and Problems of Fluid Inclusions Dynamics Simulation[J]. Exploration Techniques, 2008(1): 44-47.

[14] 米敬奎,肖贤明,刘德汉,等. 利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力[J]. 中国科学:地球科学,2003,33(7):679-685. Mi Jingkui, Xiao Xianming, Liu Dehan, et al. The Application of Fluid Inclusions PVT Characteristics to Simula the Pressure Natural Gas Reservoirs[J]. Science China: Earth Sciences, 2003, 33(7): 679-685.

[15] 潘立银,倪培,欧光习,等. 油气包裹体在油气地质研究中的应用:概念、分类、形成机制及研究意义[J]. 矿物岩石地球化学通报,2006,25(1):19-28. Pan Liyin, Ni Pei, Ou Guangxi, et al. Application of Organic Inclusion Study in Petroleum Geology: Conception, Classification, Formation Mechanism and Significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1): 19-28.

[16] Pironon J.Fluid Inclusions in Petroleum Environments:Analytical Procedure for PTX Reconstruction[J].Acta Petrologica Sinica, 2004, 20(6): 1333-1342.

[17] 刘德汉,宫色,刘东鹰,等.江苏句容黄桥地区有机包裹体形成期次和捕获温度、压力的PVTsim模拟计算[J].岩石学报,2005,21(5): 1435-1448. Liu Dehan, Gong Se, Liu Dongying, et al. Investigation on the Phases of Organic Inclusion from Gourong-Huangqiao Region, Jiangsu Province, and Its Trapped Temperature & Pressure Calculated by PVTsim Modeling[J]. Acta Petrologica Sinica, 2005, 21(5): 1435-1448.

[18] 刘建章,陈红汉,李剑,等.鄂尔多斯盆地伊陕斜坡山西组2段包裹体古流体压力分布及演化[J].石油学报,2008,29(2): 226-234. Liu Jianzhang, Chen Honghan, Li Jian, et al. Paleo-Fluid Pressure Distribution and Evolution of Inclusions in the Second Member of Shanxi Formation in Yi-Shaan Slope of Ordos Basin[J]. Acta Petrolei Sinica, 2008, 29(2): 226-234.

[19] 蔡李梅,陈红汉,李纯泉,等.济阳坳陷东营凹陷沙三中亚段流体包裹体古流体势场恢复[J].石油与天然气地质,2009,30(1):17-25. Cai Limei, Chen Honghan, Li Chunquan, et al. Reconstruction of the Paleo-Fluid Potential Field of Es3 in the Dongying Sag of the Jiyang Depression with Systematic Fluid Inclusion Analysis[J]. Oil & Gas Geology, 2009, 30(1): 17-25.

[20] 施伟军,蒋宏,席斌斌. 应用储层流体包裹体PVTX模拟研究油气成藏期次:以塔里木盆地托甫台地区为例[J]. 高校地质学报,2012,18(1):125-132. Shi Weijun, Jiang Hong, Xi Binbin. Application of the PVTX Simulation of Reservoir Fluid Inclusions to Estimate Petroleum Charge Stages: A Case Study in the Tuoputai Area of Tarim Basin[J]. Geological Journal of China Universities. 2012, 18(1): 125-132.

[21] 毛毳. 储层流体包裹体低温原位分析方法及PVT模拟[D]. 青岛:中国石油大学,2010. Mao Cui. Fluid Inclusions in Reservoirs:Method of Cryogenic In-Situ Analysis and PVT Simulation[D]. Qingdao: China University of Petroleum, 2010.

[22] 李丕龙,姜在兴,马在平. 东营凹陷储集体与油气分布[M]. 北京:石油工业出版社,2000. Li Pilong, Jiang Zaixing, Ma Zaiping. Reservoir and the Hydrocarbon Distribution in Dongying Depression[M]. Beijing: Petroleum Industry Press, 2000.

[23] 游国庆,潘家华,刘淑琴,等. 东营凹陷古近系砂岩成岩作用与孔隙演化[J]. 岩石矿物学杂志,2006,25(3):237-242. You Guoqing,Pan Jiahua,Liu Shuqin,et al.Diagenesis and Pore Evolution of Paleogene Sandstone Reservoir in Dongying Depression[J]. Acta Petrologica et Mineralogical, 2006, 25(3): 237-242.

[24] 周振柱. 东营凹陷"盐下"深层温压场演化与油气成藏[D]. 青岛:中国石油大学,2011. Zhou Zhenzhu. The Evolution of Geotemperature-Geopressure Fields and Hydrocarbon Accumulation in Deep Reservoirs Underlying Gypsum-Salt Strata in Dongying Sag[D]. Qingdao: China University of Petroleum, 2011.

[25] Crawford M L. Phase Equilibria in Aqueous Fluid Inclusions[M]// Hollister L S, Crawford M L. Short Course in Fluid Inclusions. [S. l.]: Mineralogical Association of Canada, 1981.

[26] Bodnar R J.Reviced Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions[J]. Geochimica Cosmochimica Acta, 1993, 57: 683-684.

[27] 毛毳,陈勇,周瑶琪,等. NaCl-CaCl2盐水低温拉曼光谱特征及在包裹体分析中的应用[J]. 光谱学与光谱分析,2010,30(12):3258-3263. Mao Cui, Chen Yong, Zhou Yaoqi, et al. Cryogenic Raman Spectroscopic Characteristics of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O: Application to Analysis of Fluid Inclusions[J]. Spectroscopy and Spectral Analysis, 2010, 30(12): 3258-3263.

[28] 毛毳,陈勇,周瑶琪,等. 储层烃类包裹体类型识别与PVT模拟方法[J]. 岩矿测试,2010,29(2):648-652. Mao Cui, Chen Yong, Zhou Yaoqi, et al. Identification of Hydrocarbon Inclusion Types and PVT Simulation Methods[J]. Rock and Mineral Analysis, 2010, 29(2): 648-652.

[29] 叶松,张文淮,张志坚.有机包裹体荧光显微分析技术简介[J]. 地质科技情报,1998,17(2):76-80. Ye Song, Zhang Wenhuai, Zhang Zhijian. Micro-Fluorescence Analysis Technology of Organic Inclusions and Its Application in Petroleum Geology[J]. Geological Science and Technology Information, 1998, 17(2): 76-80.

[30] 柳少波,顾家裕. 流体包裹体成分研究方法及其在油气研究中的应用[J]. 石油勘探与开发,1997,24(3):29-33. Liu Shaobo, Gu Jiayu. Analytical Methods of Fluid Inclusions and Applications to the Study of Oil and Gas[J]. Petroleum Exploration and Development, 1997, 24(3): 29-33.

[31] 李荣西,金奎励,廖永胜. 有机包裹体显微傅立叶红外光谱和荧光光谱测定及其意义[J]. 地球化学,1998,27(3):244-245. Li Rongxi, Jin Kuili, Liao Yongsheng. Analysis of Organic Inclusions Using Micro-FT.IR and Fluorescence Microscopy and Its Significance[J]. Geochimica, 1998, 27(3): 244-245.

[32] 赵艳军,陈红汉. 油包裹体荧光颜色及其成熟度关系[J]. 地球科学:中国地质大学学报,2008,33(1):91-96. Zhao Yanjun, Chen Honghan. The Relationship Between Fluorescence Colors of Oil Inclusions and Their Maturities[J]. Earth Science: Journal of china University of Geosciences, 2008, 33(1): 91-96.

[33] Goldstein R H, Reynolds T J. Systematics of Fluid Inclusions in Diagenetic Minerals[J]. SEPM Short Course,1994, 31: 69-85.

[34] 孙青,曾贻善. 单个流体包裹体成分无损分析进展[J]. 地球科学进展,2000,15(6):673-678. Sun Qing, Zeng Yishan. Development of In-Situ Analysis of Individual Fluid Inclusions[J]. Advance in Earth Sciences, 2000, 15(6): 673-678.

[35] 邹育良,霍秋立,俞萱. 油气包裹体的显微红外光谱测试技术及应用矿物岩石[J]. 矿物岩石地球化学通报,2006,25(1):105-108. Zou Yuliang, Huo Qiuli, Yu Xuan. The Analytical Technique of the Micro Infrared Spectra of the Hydrocarbon Inclusions and Its Application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1): 105-108.

[36] 陈勇,葛云锦,周瑶琪,等. 实际储层温压条件下成功合成碳酸盐岩烃类包裹体及其启示意义[J]. 地学前缘,2009,16(1):11-16. Chen Yong, Ge Yunjin, Zhou Yaoqi, et al. Hydrocarbon Bearing Inclusions Synthesized in Carbonate at the Temperature and Pressure of Natural Reservoir: Some Important Implications for the Study of Petroleumgeology[J]. Earth Science Frontiers, 2009, 16(1): 11-16.

[37] Pironon J, Thiery R, Aytougougdal M, et al. FT-IR Measurements of Petroleum Fluid Inclusions:Methane,n-Alkanes,and Carbon Dioxide Quantitative Analysis[J]. Geofluids, 2001, 1: 2-10.

[38] 孙先达,索丽敏,姜洪启,等. 激光扫描共聚焦显微镜在石油地质上的应用[J]. 电子显微学报,2004,23(4):517-518. Sun Xianda, Suo Limin, Jiang Hongqi, et al. Application of Confocal Laser Scanning Microscopy in Petroleum Geology[J]. Journal of Chinese Electron Microscopy Society 2004, 23(4): 517-518.

[39] 周振柱,周瑶琪,陈勇,等. 一种获取流体包裹体气液比的便捷方法[J]. 地质论评,2011,57(1):147-152. Zhou Zhenzhu, Zhou Yaoqi, Chen Yong, et al. A Convenient Method for Obtaining Vapour/Liquid Ratios of Fluid Inclusions[J]. Geological Review, 2011, 57(1): 147-152.

[40] Thiéry R, Pironon J, Walgenwitz F,et al. PIT(Petroleum Inclusion Thermodynamic):A New Modelling Tool for the Characterisation of Hydrocarbon Fluid Inclusions from Volumetric and Microthermometric Measurements[J]. Journal of Geochemical Exploration, 2000(69/70): 701-704.

[41] Montel F. Phase Equilibria Needs for Petroleum Exploration and Production Industry[J]. Fluid Phase Equilib, 1993, 84:343-367.

[42] Thiéry R, Pironon J, Walgenwitz F, et al. Individual Characterization of Petroleum Inclusions (Composition and p-T Trapping Conditions) by Microthermometry and Confocal Scanning Laser Microscopy:Inferences from Applied Thermodynamics of Oils[J]. Marine and Petroleum Geology, 2002, 19: 847-859.

[43] 葛云锦,陈勇,周瑶琪,等. 不同油水比条件下人工合成碳酸盐岩烃类包裹体特征实验研究[J]. 地质学报,2009,83(4):542-548. Ge Yunjin, Chen Yong, Zhou Yaoqi, et al. Characteristics of Synthetic Hydrocarbon Bearing Inclusions in Carbonatic Rocks Under Various Oil-Water Ratios[J]. Acta Geologica Sinica, 2009, 83(4): 542-548.

[44] 葛云锦. 碳酸盐岩烃类包裹体形成机制及其对油气成藏的响应[D]. 青岛:中国石油大学,2010 . Ge Yunjin. Trapping Mechanism of Hydrocabon Inclusion in Carbonate and Its Response to Hydrocarbon Accumulation[D]. Qingdao: China University of Petroleum, 2010.

[45] 葛云锦,陈勇,周瑶琪,等. 实验模拟碳酸盐岩储层包裹体对油气充注的响应[J]. 地球科学进展,2011,26(10):1050-1056. Ge Yunjin, Chen Yong, Zhou Yaoqi, et al. Experimental Simulation of Fluid Inclusion Response to Hydrocarbon Charge in Carbonate Reservoir[J]. Advances in Earth Science, 2011, 26(10): 1050-1056.

[46] 朱光有,金强,戴金星,等. 东营凹陷油气成藏期次及其分布规律研究[J]. 石油与天然气地质,2004,25(2):209-215. Zhu Guangyou, Jin Qiang, Dai Jinxing, et al. A Study on Periods of Hydrocarbon Accumulation and Distribution Pattern of Oil and Gas Pools in Dongying Depression[J]. Oil & Gas Geology, 2004, 25(2): 209-215.

[1] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965-980.
[2] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[3] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[4] 牟敦山, 付广, 陈雪晴. 南堡1号构造馆三段断盖配置油气渗漏部位及其控藏作用[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1008-1017.
[5] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[6] 龚跃华, 杨胜雄, 王宏斌, 梁金强, 梁劲. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1030-1042.
[7] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[8] 贾艳聪, 操应长, 林畅松, 王健. 东营凹陷博兴洼陷沙四上亚段滩坝优质储层形成机理与分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 652-664.
[9] 刘海, 林承焰, 张宪国, 王宏伟, 付晓亮, 李佳. 孔店油田馆陶组辫状河储层构型及剩余油分布规律[J]. 吉林大学学报(地球科学版), 2018, 48(3): 665-677.
[10] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[11] 孙海涛, 钟大康, 李勇, 毛亚昆, 杨宪彰. 超深低孔特低渗砂岩储层的孔隙成因及控制因素——以库车坳陷克深地区巴什基奇克组为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 693-704.
[12] 胡欣蕾, 吕延防, 孙永河, 孙同文. 泥岩盖层内断层垂向封闭能力综合定量评价:以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718.
[13] 蔡来星, 卢双舫, 肖国林, 王蛟, 吴志强, 郭兴伟, 侯方辉. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1): 15-28.
[14] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[15] 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!