吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 398-411.doi: 10.13278/j.cnki.jjuese.201602109

• 地质与资源 • 上一篇    下一篇

楚雄盆地六苴砂岩型铜矿床成矿流体性质及演化

吴海枝, 韩润生, 吴鹏   

  1. 昆明理工大学国土资源工程学院/有色金属矿产地质调查中心西南地质调查所, 昆明 650093
  • 收稿日期:2015-08-13 发布日期:2016-03-26
  • 通讯作者: 韩润生(1964-),男,研究员,教授,主要从事矿床学与隐伏矿预测研究工作,E-mail:554670042@qq.com E-mail:554670042@qq.com
  • 作者简介:吴海枝(1982-),男,在站博士后,主要从事矿物学与流体地球化学研究,E-mail:haizhiwu664@126.com
  • 基金资助:

    高校博士学科点博导类专项科研基金(20115314110010);全国危机矿山重大专项(20089943);国家自然科学基金项目(U1133602,41102049);云南省矿产预测工程实验室及创新团队(2014);中科院矿床地球化学国家重点实验室开放研究基金(201109)

Properties and Evolution of Ore-Forming Fluid in Liuju Sandstone Type Copper Deposit, Chuxiong Basin in Yunnan Province

Wu Haizhi, Han Runsheng, Wu Peng   

  1. Faculty of Land Resources Engineering, Kunming University of Science and Technology/Southwest Institute of Geological Survey, Geological Survey Centre for Nonferrous Metals Resource, Kunming, Yunnan 650093, China
  • Received:2015-08-13 Published:2016-03-26
  • Supported by:

    Supported by Specialized Research Fund for the Doctoral Program of Higher Education (20115314110010), Special Exploration Program for National Crisis Mines (20089943), Programs of the NNSF (U1133602, 41102049), Yunnan Province Innovation Team Project (2014) and The State Key Laboratory Open Research Program of Ore Deposit Geochemistry (201109)

摘要:

六苴铜矿床是中国南方中、新生代红层盆地中典型的陆相砂岩型铜矿床,具有明显的"金属矿物分带"及"浅色和紫色砂岩过渡带控矿"两大特征。为探讨该矿床流体演化及成矿机制,本文以矿化类型及成矿期次划分为基础,进行了详细的流体包裹体特征、显微测温及成分分析研究。研究结果表明,六苴铜矿床成矿作用主要经历成岩期和改造期两个时期,改造期分早、晚两阶段。两期次的流体包裹体均以纯液相型和富液型盐水包裹体为主,流体均一温度具有先升高后降低的演化趋势,温度范围分别为:96~164℃、108~227℃、94~159℃;而盐度(w(NaCl))差别不大,改造期比成岩期略低,范围分别为2.7%~16.7%、2.1%~13.8%、1.2%~13.5%,总体属中低温-中低盐度盆地卤水。包裹体岩相学观察与激光拉曼气相成分测试表明,成岩期含少量烃类包裹体,而改造期含少量CO2包裹体。两期包裹体群体成分也有一定差异:挥发分具有从还原性富有机质的CH4端元向相对氧化的CO2端元演化的特点;离子成分由富SO42-(-Cl-)-Ca2+-K+型向富Cl--Na+型转变。成岩期流体演化形成了砂岩铜矿层状产出的浸染状或纹层状矿(化)体,改造期的构造流体在层状矿(化)体基础上进一步演化形成受构造控制的条带状、脉状富矿体(脉)。

关键词: 砂岩型铜矿床, 流体包裹体, 流体演化, 成矿过程, 六苴, 楚雄盆地

Abstract:

Liuju copper deposit is one of the typical terrestrial sandstone-type deposits, and which is located in the Meso-Cenozoic red-bed basin of South China. The mineralization occurred in the interface between the purple and grey beds of medium-fine grained sandstone strata. Besides, Hematite, chalcocite, bornite, chalcopyrite, and pyrite coexist in this transitional zone from the purple bed to grey bed, a horizontal metallic mineral zone. Aiming at the ore-forming fluid evolution and mineralization mechanism, this paper focuses on the characteristics of fluid inclusions on the basis of mineralization types and mineralizing periods. The fluid mineralization of Liuju deposit can be divided into diagenesis period and tectonic-reworked period; the latter can be further divided into early and late stages. In the two stages, fluid inclusions are predominated by pure-liquid type aqueous inclusions and gas-liquid aqueous inclusions with rich liquid. The homogenization temperatures of the three stages experienced an evolution trend as follows:increased from 96-164℃ to 108-227℃, then decreased to 94-159℃; while the salinities(w(NaCl)) were slightly decreased from 2.7%-16.7% to 2.1%-13.8%, then 1.2%-13.5%, showing little difference. Generally, all the three stages of the ore-forming fluid were medium-low temperature and medium-low salinity basin brine. By the petrographic feature observation and the laser raman spectroscopy test of the gas component in fluid inclusions, it was confirmed that small amounts of hydrocarbon fluid inclusions were contained in the diagenesis period; while small amounts of three-phase CO2 inclusions were found in the tectonic-reworked period. Besides, their grouped fluid compositions are different. The ore-forming fluid experienced a trend as follows:the gas component changed from the reducing organic-rich end (CH4) to the relatively oxidizing end (CO2) in the N2-CH4-CO2 triangular diagram; meanwhile, the ionic component changed from the rich SO42-(-Cl-)-Ca2+-K+ type to the rich Cl--Na+ type. Different properties of ore-forming fluids played different roles in the mineralization of bedded orebodies and veined orebodies. During the ore-forming fluid evolution, the disseminated or laminated ores in sandstone-type copper deposits were formed in the diagenesis period; while, the high-grade banded, veined ores on the base of bedded orebody controlled by the fracture are formed during the further evolution in tectonic-reworked period.

Key words: sandstone-type copper deposit, fluid inclusions, ore-forming fluid evolution, metallogenetic process, Liuju, Chuxiong basin

中图分类号: 

  • P618.41

[1] 张志斌, 曹德斌. 滇中楚雄中生代盆地的形成、演化及其与哀牢山造山带的关系:以楚雄西舍路至禄丰碧城镇区域地质综合剖面为例[J]. 地球学报, 2002, 23(2):129-134. Zhang Zhibin, Cao Debin. The Relationship of the Formation and Evolution of Mesozoic Chuxiong Basin to Ailaoshan Orogenic Belt in Central Yunnan:Examplified by Regional Geological Integrated Section from Xishelu of Chuxiong to Bichengzhen of Lufeng[J]. Acta Geoscientia Sinica, 2002, 23(2):129-134.

[2] 刘昌辉, 刘存林, 蒋淑芳. 砂岩铜矿地质:滇中砂岩铜矿床的实践与认识[M]. 北京:冶金工业出版社, 1977:227-244. Liu Changhui, Liu Cunlin, Jiang Shufang. Geology of Sandstone-Type Copper Deposit:Practice and Understanding of Sandstone-Type Copper Deposit in Central Yunnan Province[M]. Beijing:Metallurgical Industry Press, 1977:227-244.

[3] 何毅特. 滇中楚雄盆地砂岩铜矿床成因研究[J]. 西南矿产地质, 1990, 4(2):1-9. He Yite. Research on the Origin of Sandstone-Type Copper Deposit in Chuxiong Baisin, Yunnan Province[J]. Geology and Mineral Resources of Southwest China, 1990, 4(2):1-9.

[4] 方向池, 卢今才, 王维贤. 云南六苴矿区构造动力成矿探讨[J]. 西南矿产地质, 1990, 4(4):49-56. Fang Xiangchi, Lu Jincai, Wang Weixian. Discussion on Tectonic Dynamic Metallogeny of Liuju Deposit in Yunnan Province[J]. Geology and Mineral Resources of Southwest China, 1990, 4(4):49-56.

[5] 涂光炽, 王秀璋, 陈先沛. 中国层控矿床地球化学:第三卷[M]. 北京:科学出版社, 1988:1-9, 15-19, 229-254. Tu Guangchi, Wang Xiuzhang, Chen Xianpei. Geochemistry of Stratabound Deposits in China:Volume 3rd[M]. Beijing:Science Press, 1988:1-9, 15-19, 229-254.

[6] 冉崇英, 庄汉平. 楚雄盆地铜、盐、有机矿床组合地球化学[M]. 北京:科学出版社, 1998:73-76. Ran Chongying, Zhuang Hanping. Geochemistry of the Associated Copper, Saline and Organic Deposits in the Chuxiong Basin, Yunnan, China[M]. Beijing:Science Press, 1998:73-76.

[7] 秦德先, 孟清, 杨明初. 牟定郝家河铜矿床的沉积-改造成因[J]. 矿床地质, 1993, 12(2):97-107. Qin Dexian, Meng Qing, Yang Mingchu. The Sedimentary-Reformation Origin of the Haojiahe Copper Deposit, Mouding County, Yunnan Province[J]. Mineral Deposits, 1993, 12(2):97-107.

[8] 张可清, 熊鹏飞. 滇中砂岩铜矿成矿作用和成矿模式[J]. 地球科学:中国地质大学学报, 1995, 20(2):199-202. Zhang Keqing, Xiong Pengfei. Minerogenesis and Minerogenic Model of Sandstone-Type Copper Deposit in Central Yunnan Province[J]. Earth Science:Journal of China University of Geoscience, 1995, 20(2):199-202.

[9] 谭凯旋. 砂岩铜矿地球化学和成矿动力学[M]. 北京:地震出版社, 1998:137-143. Tan Kaixuan. Geochemistry and Dynamic Metallogeny of Sandstone-Type Copper Deposit[M]. Beijing:Seismological Press, 1998:137-143.

[10] 韩润生, 邹海俊, 吴鹏, 等. 楚雄盆地砂岩型铜矿床构造-流体耦合成矿模型[J]. 地质学报, 2010, 84(10):1438-1447. Han Runsheng, Zou Haijun, Wu Peng, et al. Coupling Tectonic-Fluid Metallogenic Model of the Sandstone-Type Copper Deposit in the Chuxiong Basin, China[J]. Acta Geologica Sinica, 2010, 84(10):1438-1447.

[11] 胡煜昭, 韩润生, 闵朝龙, 等. 楚雄盆地六苴铜矿含矿岩系沉积演化、成矿时代及成矿深度分析[J]. 世界地质, 2010, 29(2):218-225. Hu Yuzhao, Han Runsheng, Min Chaolong, et al. Analysis on Sedimentary Evolution, Mineralization Epoch and Depth of Ore-Bearing Rocks in Liuju Copper Deposit, Chuxiong Basin[J]. Global Geology, 2010, 29(2):218-225.

[12] 吴鹏, 韩润生, 胡煜昭, 等. 云南楚雄红层盆地六苴砂岩铜矿区断裂的地质特征及其与成矿的关系[J]. 地质通报, 2010, 27(5):618-625. Wu Peng, Han Runsheng, Hu Yuzhao, et al. Geological Characteristics of Faults in the Liuju Sanstone Copper District in the Chuxiong Red-Bed Basin, Yunnan, China, and Their Relations to Mineralization[J]. Geological Bulletin of China, 2010, 27(5):618-625.

[13] 朱和平, 王莉娟, 刘建明. 不同成矿阶段流体包裹体气相成分的四极质谱测定[J]. 岩石学报, 2003, 32(7):314-318. Zhu Heping, Wang Lijuan, Liu Jianming. Determination of Quadrupole Mass Spectrometer for Gaseous Composition of Fluid Inclusions from Different Mineralization Stages[J]. Acta Petrologica Sinica, 2003, 32(7):314-318.

[14] 陶士振, 郭宏莉, 张宝民, 等. 沉积岩包裹体的岩相学、分类、术语及常被忽略的问题[J]. 地质科学, 2003, 38(2):275-280. Tao Shizhen, Guo Hongli, Zhang Baomin, et al. Petrography, Classification, Terminology and Fundamental Questions Ignored Usually of Inclusion in Sedment Rocks[J]. Chinese Journal of Geology, 2003, 38(2):275-280.

[15] 欧光习, 李林强, 孙玉梅. 沉积盆地流体包裹体研究的理论与实践[J]. 矿物岩石地球化学通报, 2006, 25(1):1-11. Ou Guangxi, Li Linqiang, Sun Yumei. Theory and Application of the Fluid Inclusion Research on the Sedimentary Basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1):1-11.

[16] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京:科学出版社, 2004:156-159, 201-213. Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusion[M]. Beijing:Science Press, 2004:156-159, 201-213.

[17] Bodnar R J. Reviced Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions[J]. Geochimistry Cosmochimistry Acta, 1993,57:683-684.

[18] 张艳, 韩润生, 吴鹏, 等. 陆相砂岩型铜矿床矿物分带模式的pH-Eh相图:以楚雄盆地大姚六苴铜矿床为例[J]. 矿物学报, 2013, 33(3):363-368. Zhang Yan, Han Runsheng, Wu Peng, et al. Application of Thermodynamics pH-Eh to Mineral Zonation Model of Sandstone-Hosted Type Copper Depo-sits in the Chuxiong Basin, Central Yunnan Province, China[J]. Acta Mineralogica Sinica, 2013, 33(3):363-368.

[19] 於崇文. 热液成矿作用动力学[M]. 北京:中国地质大学出版社, 1993:124-129. Yu Chongwen. Dynamics of Hydrothermal Mineralization[M]. Beijing:China University of Geoscience Press, 1993:124-129.

[20] 付晓飞, 肖建华, 孟令东. 断裂在纯净砂岩中的变形机制及断裂带内部结构[J]. 吉林大学学报(地球科学版), 2014, 44(1):25-37. Fu Xiaofei, Xiao Jianhua, Meng Lingdong. Fault Deformation Mechanisms and Internal Structure Characteristics of Fault Zone in Pure Sandstone[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1):25-37.

[21] 庄汉平, 冉崇英, 何明琴, 等. 楚雄盆地铜、盐、有机质相互作用与砂岩铜矿生成[J]. 地质学报, 1996, 70(2):162-172. Zhuang Hanping, Ran Chongying, He Mingqin, et al. Interactions of Copper, Evaporite and Organic Matter and Genesis of Sandstone-Hosted Copper Deposits in Chuxiong Basin, Yunnan Province[J]. Acta Geologica Sinica, 1996, 70(2):162-172.

[22] 李秉伦, 王英兰, 谢奕汉. 气液包裹体气相色谱分析及其地质意义[J]. 地质科学, 1982(2):220-225. Li Binglun, Wang Yinglan, Xie Yihan. Gas Chromatographic Analysis of Fluid Inclusions and Their Geological Significance[J]. Scientia Geologica Sinica, 1982(2):220-225.

[23] 徐永昌, 沈平, 孙明良, 等. 非烃及稀有气体的地球化学[C]//中国科学院兰州地质研究所. 生物、气体地球化学开放研究实验室研究年报(19881989). 北京:科学出版社, 1991:1-9. Xu Yongchang, Shen Ping, Sun Mingliang, et al. Nonhydrocarben and Noble Gas Geochemistry[C]//Lanzhou Institute of Geology, Chinese Academy of Sciences. Annual Review of Biological, Gas Geochemistry Open Laboratory(1988-1989). Beijing:Science Press, 1991:1-9.

[24] 刘家军, 柳振江, 杨艳, 等. 盐类在金属、非金属成矿过程中的作用[J]. 地质找矿论丛, 2007, 22(3):161-171. Liu Jiajun, Liu Zhenjiang, Yang Yan, et al. The Salt Roles in the Mineralizing Processes of Metal and Non-metal Deposits[J]. Contributions to Geology and Mineral Resources Research, 2007, 22(3):161-171.

[25] Hitzman W M, Selley D,Bull S. Formation of Sedimentary Rock-Hosted Stratiform Copper Deposits Through Earth History[J]. Economic Geology, 2010, 105:627-639.

[26] 陈根文. 楚雄盆地充填序列及砂岩铜矿成矿模式研究[D]. 长沙:中南大学, 1999:104-114. Chen Genwen. Study on the Folling Sequence and Metalogenic Model of Sandstone Copper Deposits in Chuxiong Basin[D]. Changsha:Central South University, 1999:104-114.

[27] 曹养同, 刘成林, 陈永志, 等. 库车前陆盆地古新近系铜矿化特征及铜的来源、富集分布初探[J]. 地质学报, 2010, 84(12):1791-1804. Cao Yangtong, Liu Chenglin, Chen Yongzhi, et al. Characteristics of Copper Mineralization in the Kuqa Foreland Basin, and Origin, Enrichment and Distribution of Copper[J]. Acta Geologica Sinica, 2010, 84(12):1791-1804.

[28] 曹珂, 李祥辉, 王成善. 白垩纪特殊沉积的古气候指示及红层定量古温度测量研究[J]. 四川地质学报, 2006, 24(6):199-204. Cao Ke, Li Xianghui, Wang Chengshan. Paleoclimate Indicator and Quantitative Determination of Paleotemperature in the Cretaceous Red Beds[J]. Acta Geologica Sichuan, 2006, 24(6):199-204.

[29] 金鑫, 王进, 陈天虎, 等. 铁氧化物对硫酸盐还原菌分解硫酸盐矿物的协同作用[J]. 矿物学报, 2010, 30(3):343-348. Jin Xin, Wang Jin, Chen Tianhu, et al. The Synergistic Influence of Iron Oxide on the Dissolution of Sulfate Mineral[J]. Acta Mineralogica Sinica, 2010, 30(3):343-348.

[30] 庄汉平, 冉崇英, 何明勤, 等. 滇中砂岩铜矿成矿过程中水-岩反应的证据与机理[J]. 地球科学:中国地质大学学报, 1996, 21(3):327-331. Zhuang Hanping, Ran Chongying, He Mingqin, et al. Evidence and Mechanism of Water-Rock Interaction During Mineralization of Sandstone-Hosted Copper Deposits in Central Yunnan Province[J]. Earth Science:Journal of China University of Geoscience, 1996, 21(3):327-331.

[31] 张凤君,王怀远,王广华, 等. CO2流体与储层砂岩相互作用机理实验[J]. 吉林大学学报(地球科学版), 2012, 42(3):821-826. Zhang Fengjun, Wang Huaiyuan, Wang Guanghua, et al. Experiment on Mechanism of CO2 Fluid Interacting with Sandstone Layer[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3):821-826.

[32] 张哨楠. 四川盆地西部须家河组砂岩储层成岩作用及致密时间讨论[J]. 矿物岩石, 2009, 29(4):33-38. Zhang Shaonan. Discussion on the Diagenesis and Timing of Tight Sandstone Reservoir in Xujiahe Formation, Western Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2009, 29(4):33-38.

[33] 刘宝珺, 张锦泉. 沉积成岩作用[M]. 北京:科学出版社, 1992:214-234. Liu Baojun, Zhang Jinquan. Sedimentary Diagenesis[M]. Beijing:Science Press, 1992:214-234.

[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[2] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[3] 张聪, 石砥石, 张子亚, 陈科, 苑坤, 乔计花, 彭芳苹. 云南楚雄盆地西部高精度重磁电特征及基底特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 863-871.
[4] 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104.
[5] 和成忠, 张德会, 吴鸣谦, 夏岩, 张荣臻, 胡铁军. 辽宁青城子姚家沟斑岩型钼矿流体包裹体[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1717-1731.
[6] 门兰静, 孙景贵, 王好均, 柴鹏, 赵克强, 古阿雷, 刘城先. 延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1365-1382.
[7] 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404.
[8] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[9] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
[10] 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[11] 张延军, 孙丰月, 李碧乐, 李良, 陈扬. 青海湟中县三岔金矿流体包裹体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1342-1353.
[12] 王晰, 段明新, 任云生, 侯召硕, 孙德有, 郝宇杰. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1354-1367.
[13] 王可勇, 付丽娟, 韦烈民, 王志高. 辽宁榛子沟铅锌矿床热液叠加成矿作用特征及成矿流体来源[J]. 吉林大学学报(地球科学版), 2016, 46(1): 80-90.
[14] 韩润生, 李波, 倪培, 邱文龙, 王旭东, 王天刚. 闪锌矿流体包裹体显微红外测温及其矿床成因意义——以云南会泽超大型富锗银铅锌矿床为例[J]. 吉林大学学报(地球科学版), 2016, 46(1): 91-104.
[15] 张志辉, 张达, 狄永军, 李兴俭, 阙朝阳, 马先平, 杜泽忠. 安徽铜陵焦冲金矿床成矿流体特征及成矿机制[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1657-1666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!