吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1071-1079.doi: 10.13278/j.cnki.jjuese.201604107
刘立, 白杭改, 刘娜, 明晓冉, 蒋令旭
Liu Li, Bai Hanggai, Liu Na, Ming Xiaoran, Jiang Lingxu
摘要:
洪水型季节性河流砂岩以碎屑黏土含量高为特征。按照组构,碎屑黏土可划分为泥质内碎屑、机械渗滤黏土和成壤泥质凝聚体。泥质内碎屑主要分布于河道砂岩的底部。机械渗滤黏土包括脊状和桥状、示底组构、松散聚集、胶膜和块状聚集体5种类型,其空间分布受控于潜水面波动和河道下切或迁移。成壤泥质凝聚体往往分布于具有纹理或交错层理的砂岩或粉砂岩、滞留沉积、大型槽状层理砂岩与河道充填序列的顶部。机械渗滤黏土是导致河流相砂岩储层非均质性的重要因素之一,砒砂岩的侵蚀脆弱性可能与高含碎屑蒙皂石有关。
中图分类号:
[1] Matlack K S, Houseknecht D W, Applin K R. Emplacement of Clay into Sand by Infiltration[J]. Journal of Sedimentary Petrology, 1989, 59(1): 77-87.[2] Moraes M A S, Ros L F D. Depositional, Infiltrated and Authigenic Clays in Fluvial Sandstones of the Jurassic Sergi Formation,Recǒncavo Basin,Northeastern Brazil[M]// Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones.Oklahoma: Society for Sedimentary Geology,1992: 197-208.[3] Müller R, Nystuen J P, Wright V P. Pedogenic Mud Aggregates and Paleosol Development in Ancient Dryland River Systems: Criteria for Interpreting Alluvial Mudrock Origin and Floodplain Dynamics[J]. Journal of Sedimentary Research, 2004, 74(4): 537-551.[4] Friend P F. Distinctive Features of Some Ancient River Systems[J]. Fluvial Sedimentology, 1978, 5: 531-542.[5] Nichols G J, Fisher J A. Processes, Facies and Architecture of Fluvial Distributary System Deposits[J]. Sedimentary Geology, 2007, 195(1/2): 75-90.[6] 李华启, 姜在兴, 邱隆伟,等. 柯克亚凝析气田中新统西河甫组季节性河流沉积特征研究[J]. 新疆地质, 2003, 21(1): 69-73. Li Huaqi, Jiang Zaixing, Qiu Longwei, et al. Season River Sedimentation of Xihefu Formation in Kekeya Gas Condensate Field[J]. Xinjiang Geology, 2003, 21(1): 69-73.[7] 高志勇, 冯佳睿, 周川闽,等. 干旱气候环境下季节性河流沉积特征: 以库车河剖面下白垩统为例[J]. 沉积学报, 2014, 32(6): 1060-1071. Gao Zhiyong, Feng Jiarui, Zhou Chuanmin, et al. Arid Climate Seasonal Rivers Deposition: A Case of Lower Cretaceous in Kuche River Outcrop[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1060-1071.[8] 陈贤良, 纪友亮, 杨克明,等. 川西坳陷上侏罗统遂宁组洪水-漫湖沉积特征[J]. 沉积学报, 2014, 32(5): 912-920. Chen Xianliang, Ji Youliang, Yang Keming, et al. Flood-Overlake Sedimentary Characteristics of the Suining Formation (Lower Jurassic) in Western Sichuan Depression[J]. Acta Sedimentologica Sinica, 2014, 32(5): 912-920.[9] 潘树新, 卫平生, 王天奇,等. 大型坳陷湖盆"洪水-河漫湖"沉积: 以干旱背景下的松南泉四段为例[J]. 地质论评, 2012, 58(1): 41-52. Pan Shuxin, Wei Pingsheng, Wang Tianqi, et al. Sedimentary Characteristics of Flood-Overlake in Large Depression Basin Taking the 4th Member, Quantou Formation, Lower Cretaceous,in Southern Songliao Basin as an Example[J]. Geological Review, 2012, 58(1): 41-52.[10] Garzanti E. Non-Carbonate Intrabasinal Grains in Ar-enites: Their Recognition, Significance, and Relationship to Eustatic Cycles and Tectonic Setting[J]. Journal of Sedimentary Research, 1991, 61(6):514-517.[11] Ketzer J M, Holz M, Morad S, et al. Sequence Stratigraphic Distribution of Diagenetic Alterations in Coal-Bearing, Paralic Sandstones: Evidence from the Rio Bonito Formation (Early Permian), Southern Brazil[J]. Sedimentology, 2003, 50(5): 855-877.[12] Elghali M A K, Mansurbeg H, Morad S, et al. Distribution of Diagenetic Alterations in Fluvial and Paralic Deposits Within Sequence Stratigraphic Framework: Evidence from the Petrohan Terrigenous Group and the Svidol Formation, Lower Triassic, NW Bulgaria[J]. Sedimentary Geology, 2006, 190(1): 299-321.[13] Morad S, Al-Ramadan K, Ketzer J M, et al. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A Review of the Role of Depositional Fades and Sequence Stratigraphy[J]. Aapg Bulletin, 2010, 94(8): 1267-1309.[14] Carvalho M V F, Ros L F D, Gomes N S. Carbonate Cementation Patterns and Diagenetic Reservoir Facies in the Campos Basin Cretaceous Turbidites, Offshore Eastern Brazil[J]. Marine & Petroleum Geology, 1995, 12(7): 741-758.[15] Moraes M A S,Ros L F D.Infiltrated Clays in Fluvial Jurassic Sandstones of Reconcavo Basin, Northeastern Brazil[J]. Journal of Sedimentary Geology,1990, 60(6): 809-819.[16] Andreis R R. Identificación E Importancia Geológica De Los Paleosuelos[D]. Sao Paulo: Editora da Universidade, 1981.[17] Walker T R. Diagenetic Origin of Continental Red Beds[M]// The Continental Permain in Central, West, and South Europe. Amsterdam: Springer, 1976:240-282.[18] Crone A J. Laboratory and Field Studies of Mechanically Infiltrated Matrix Clay in Arid Fluvial Sediments[D]. Colorado: University Colorado, 1975.[19] Wolela A M, Gierlowski-Kordesch E H. Diagenetic History of Fluvial and Lacustrine Sandstones of the Hartford Basin (Triassic-Jurassic), Newark Supergroup, USA[J]. Sedimentary Geology, 2007, 197(Sup.1/2): 99-126.[20] Al-Aasm I S, Abdallah H. The Origin of Dolomite Associated with Salt Diapirs in Central Tunisia: Preliminary Investigations of Field Relationships and Geochemistry[J]. Journal of Geochemical Exploration, 2006, 89(1):5-9.[21] Gastaldo R A, Pludow B A, Neveling J. Mud Aggregates from the Katberg Formation, South Africa: Additional Evidence for Early Triassic Degradational Landscapes[J]. Journal of Sedimentary Research, 2013, 83(7):531-540.[22] Gierlowski-Kordesch E H, Gibling M R. Pedogenic Mud Aggregates in Rift Sedimentation[M]// Sedimentation in Continental Rifts.Oklahoma: Society for Sedimentary Geology, 2002: 195-206.[23] Rust B R, Nanson G C. Bedload Transport of Mud as Pedogenic Aggregates in Modern and Ancient Rivers[J]. Sedimentology, 1989, 36(2): 291-306.[24] Williams G E. Piedmont Sedimentation and Late Quaternary Chronology in the Biskra Region of the Northern Sahara[J]. Zeitschrift Fur Geomorphologie, 1966, 10: 40-63.[25] Nanson G C, Young D M, Price D M, et al. Stratigraphy, Sedimentology and Late-Quaternary Chrono-logy of the Channel Country of Western Queensland[M]//Fluvial Geomorphology of Australia.Sydney: Academic Press, 1986: 151-175.[26] Wakelin-King G A, Webb J A. Threshold-Dominated Fluvial Styles in an Arid-Zone Mud-Aggregate River: The Uplands of Fowlers Creek, Australia[J]. Geomorphology, 2007, 85(1/2):114-127.[27] Brooks G R. Alluvial Deposits of a Mud-Dominated Stream: The Red River, Manitoba, Canada[J]. Sedimentology, 2003, 50(3): 441-458.[28] Ekes C. Bedload Transported Pedogenic Mud Aggregates in the Lower Old Red Sandstone in Southwest Wales[J]. Journal of the Geological Society, 1993, 150(3): 469-471.[29] Marriott S B, Wright V P. Sediment Recycling on Siluro-Devonian Floodplains[J]. Journal of the Geological Society, 1996, 153(5): 661-664.[30] Wolela A. Diagenetic Contrast of Sandstones in Hydrocarbon Prospective Mesozoic Rift Basins(Ethiopia, UK, USA)[J]. Journal of African Earth Sciences, 2014, 99: 529-553.[31] 韩学士, 宋日升. 伊克昭盟砒砂岩侵蚀特征及治理对策[J]. 人民黄河, 1996 (1): 31-33. Han Xueshi, Song Risheng. The Erosional Features and Countermeasures of Arsenic Rock in Yikezhao League[J]. Yellow River, 1996 (1): 31-33.[32] 王愿昌, 吴永红, 寇权,等. 砒砂岩分布范围界定与类型区划分[J]. 中国水土保持科学, 2007, 5(1):14-18. Wang Yuanchang, Wu Yonghong, Kou Quan, et al. Definition of Arsenic Rock Zone Borderline and Its Classification[J]. Science of Soil and Water Conservation, 2007, 5(1):14-18.[33] 王立久, 李长明, 董晶亮. 砒砂岩分布及岩性特征[J]. 人民黄河, 2013, 35(12): 91-93. Wang Lijiu, Li Changming, Deng Jingliang. Study on Distribution and Lithologic Characters of Feldspathic Sandstone[J]. Yellow River, 2013, 35(12): 91-93.[34] 张平仓, 刘玉民, 张仲子. 皇甫川流域侵蚀产沙特征及成因分析[J]. 水土保持通报, 1992, 12(2): 15-24. Zhang Pingcang, Liu Yumin, Zhang Zhongzi. The Features of Sediment Production and the Analysis of Genesis by Erosion in Huangfuchuan Watershed[J]. Bulletin of Soil and Water Conservation, 1992, 12(2): 15-24.[35] 毕慈芬, 邰源林, 王富贵,等. 防止砒砂岩地区土壤侵蚀的水土保持综合技术探讨[J]. 泥沙研究, 2003(3): 63-65. Bi Cifen, Tai Yuanlin, Wang Fugui, et al. Probe to Integrated Soil Conservation Techniques for Soil Erosion Prevention in Soft Rock Areas[J]. Journal of Sediment Research, 2003 (3): 63-65.[36] 肖培青, 姚文艺, 刘慧. 砒砂岩地区水土流失研究进展与治理途径[J]. 人民黄河, 2014, 36(10): 92-109. Xiao Peiqing, Yao Wenyi, Liu Hui. Research Progress and Harnessing Method of Soil and Water Loss in Pisha Sandstone Region[J]. Yellow River, 2014, 36(10): 92-109.[37] 石迎春, 叶浩, 侯宏冰,等. 内蒙古南部砒砂岩侵蚀内因分析[J]. 地球学报, 2004, 25(6): 659-664. Shi Yingchun, Ye Hao, Hou Hongbing, et al. The Internal Cause of the Erosion in "Pisha" Sandstone Area, Southern Inner Mongolia[J]. Acta Geoscientica Sinica, 2004, 25(6): 659-664.[38] 石建省, 叶浩, 王强恒,等. 水岩作用对内蒙古南部砒砂岩风化侵蚀的影响分析[J]. 现代地质, 2009, 23(1): 171-177. Shi Jiansheng, Ye Hao, Wang Qiangheng, et al. Effect of Water-Rock Interaction on the Weathering and Erosion of Pi-Sandstone Southern Inner Mongolia, China[J]. Geoscience, 2009, 23(1): 171-177.[39] 王强恒, 孙旭, 刘昀,等. 室内模拟水岩作用对砒砂岩风化侵蚀的影响[J]. 人民黄河, 2013, 35(4):45-47. Wang Qiangheng, Sun Xu, Liu Yun, et al. Indoor Modeling the Effect of Water-Rock Interaction on the Weathering and Erosion of Pi-Sandstone[J]. Yellow River, 2013, 35(4):45-47.[40] 马艳萍, 刘池洋, 王建强,等. 盆地后期改造中油气运散的效应: 鄂尔多斯盆地东北部中生界漂白砂岩的形成[J]. 石油与天然气地质, 2006, 27(2): 233-238. Ma Yanping, Liu Chiyang, Wang Jianqiang, et al. Effects of Hydrocarbon Migration and Dissipation in Later Reformation of a Basin: Formation of Mesozoic Bleached Sandstone in Northeastern Ordos Basin[J]. Oil and Gas Geology, 2006, 27(2): 233-238.[41] 马艳萍, 刘池洋, 赵俊峰,等. 鄂尔多斯盆地东北部砂岩漂白现象与天然气逸散的关系[J].中国科学: 地球科学, 2007, 37(Sup.1): 127-138. Ma Yanping, Liu Chiyang, Zhao Junfeng, et al. The Relationship Between the Hydrocarbon Leakage in Northeastern Ordos Basin and the Dissipation of Natural Gas[J]. Scientia Sinica :Terrae, 2007, 37(Sup.1): 127-138.[42] 刘池洋, 马艳萍, 吴柏林,等. 油气耗散: 油气地质研究和资源评价的弱点和难点[J]. 石油与天然气地质, 2008, 29(4): 517-526. Liu Chiyang, Ma Yanping, Wu Bolin, et al. Weakness and Difficulty of Petroleum Geology Study and Resource Assessment: Hydrocarbon Dissipation[J]. Oil and Gas Geology, 2008, 29(4): 517-526.[43] 宋土顺, 刘立, 王玉洁,等. 鄂尔多斯盆地漂白砒砂岩特征及成因[J]. 石油与天然气地质, 2014, 35(5): 679-684. Song Tushun, Liu Li, Wang Yujie, et al. Characteristics and Genesis of the Bleached Pisha Sandstone in Ordos Basin[J]. Oil and Gas Geology, 2014, 35(5): 679-684.[44] 李鹤, 张平宇, 程叶青. 脆弱性的概念及其评价方法[J]. 地理科学进展, 2008, 27(2): 18-25. Li He, Zhang Pingyu, Cheng Yeqing. Concepts and Assessment Methods of Vulnerability[J]. Progress in Geography, 2008, 27(2): 18-25.[45] Rosa D D L, Moreno J A, Mayol F, et al. Assessment of Soil Erosion Vulnerability in Western Europe and Potential Impact on Crop Productivity Due to Loss of Soil Depth Using the Impe1ERO Model[J]. Agriculture Ecosystems & Environment, 2000, 81(3): 179-190.[46] 刘小喜, 陈沈良, 蒋超,等. 苏北废黄河三角洲海岸侵蚀脆弱性评估[J]. 地理学报, 2014, 69(5): 607-618. Liu Xiaoxi, Chen Shenliang, Jiangchao, et al. Vulnerability Assessment of Coastal Erosion Along the Abandoned Yellow River Delta of Northern Jiangsu, China[J]. Acta Geographica Sinica, 2014, 69(5): 607-618.[47] 欧阳杰, 朱诚, 彭华,等. 湖南崀山丹霞地貌岩体抗酸侵蚀脆弱性的实验研究[J]. 地球科学进展, 2011, 26(9): 965-970. Ouyang Jie, Zhu Cheng, Peng Hua, et al. Experimental Research on Vulnerability of Danxia Rocks to Resistance Against Acid Erosion in Langshan, Hunan Province[J]. Advances in Earth Science, 2011, 26(9): 965-970.[48] 叶浩, 石建省, 李向全,等. 砒砂岩岩性特征对抗侵蚀性影响分析[J]. 地球学报, 2006, 27(2): 145-150. Ye Hao, Shi Jiansheng, Li Xiangquan, et al. The Effect of Soft Rock Lithology Upon Its Anti-Erodibility[J]. Acta Geoscientica Sinica, 2006, 27(2): 145-150.[49] 叶浩, 石建省, 王贵玲,等. 砒砂岩化学成分特征对重力侵蚀的影响[J]. 水文地质工程地质, 2006, 33(6): 5-8. Ye Hao, Shi Jiansheng, Wang Guiling, et al. Effect of Chemical Compositions of Pisha Sandstone on the Gravity Erosion[J]. Hydrogeology & Engineering Geology, 2006, 33(6): 5-8.[50] 燕守勋, 曲永新, 韩胜杰. 蒙皂石含量与膨胀土膨胀势指标相关关系研究[J]. 工程地质学报, 2004, 12(1): 74-82. Ye Shouxun, Qu Yongxin, Han Shengjie. A Study on the Relationship Between Smectite Content and Swell Potential Indices[J]. Journal of Engineering Geology, 2004, 12(1): 74-82.[51] Chamley H. Clay Sedimentology[M]. Amsterdam: Springer, 1990.[52] 赵振宇, 郭彦如, 王艳,等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012, 19(5): 15-20. Zhao Zhenyu, Guo Yanru, Wang Yan, et al. Study Progress in Tectonic Evolution and Paleogeography of Ordos Basin[J]. Special Oil & Gas Reservoirs, 2012, 19(5): 15-20.[53] 骆满生, 卢隆桥, 贾建,等. 中国中生代沉积盆地演化[J]. 地球科学:中国地质大学学报, 2014, 39(8): 954-976. Luo Mansheng, Lu Longqiao, Jia Jian, et al. Evolution of Sedimentary Basins in China During Mesozoic[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(8): 954-976.[54] Perri F, Critelli S, Perrone V, et al. Triassic Redbeds in the Malaguide Complex (Betic Cordillera-Spain): Petrography, Geochemistry and Geodynamic Implications[J]. Earth-Science Reviews, 2013, 117: 1-28.[55] Madhavaraju J, Ramasamy S, Ruffell A, et al. Clay Mineralogy of the Late Cretaceous and Early Tertiary Successions of the Cauvery Basin (Southeastern India): Implications for Sediment Source and Palaeoclimates at the K/T Boundary[J]. Cretaceous Research, 2002, 23(2): 153-163.[56] Gao Y, Wang C, Liu Z, et al. Clay Mineralogy of the Middle Mingshui Formation (Upper Campanian to Lower Maastrichtian) from the Skin Borehole in the Songliao Basin, NE China: Implications for Palaeoclimate and Provenance[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2013, 385(5): 162-170. |
[1] | 张君龙. 塔南凹陷东部构造带南屯组储层宏观非均质性对油气分布的影响[J]. J4, 2011, 41(2): 351-358. |
|