吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1080-1089.doi: 10.13278/j.cnki.jjuese.201604108

• 地质与资源 • 上一篇    下一篇

岩性差异对泥页岩可压裂性的影响分析

王冠民1,2, 熊周海1, 张婕1   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580;
    2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266071
  • 收稿日期:2016-03-03 出版日期:2016-07-26 发布日期:2016-07-26
  • 作者简介:王冠民(1969),男,教授,博士,主要从事沉积学和储层地质学的教学与研究工作,E-mail:wguanmin@sina.com
  • 基金资助:

    国家自然科学基金项目(41572123); 山东省自然科学基金项目(ZR2014DM013)

The Impact of Lithology Differences to Shale Fracturing

Wang Guanmin1,2, Xiong Zhouhai1, Zhang Jie1   

  1. 1. School of Geosciences, China University of Petroleum (East China),Qingdao 266580, Shandong, China;
    2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
  • Received:2016-03-03 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by National Natural Scicncc Foundation of China(41572123) and National Natural Scicncc Foundation of Shandong Provience (ZR2014DM013)

摘要:

泥页岩的可压裂性是决定页岩油气能否有效开发的关键之一。由于沉积和成岩过程中的差异,常造成泥页岩在成分、结构、构造、成岩作用等方面存在明显的非均质性。可压裂性在本质上是泥页岩岩性特征的综合反映,所以泥页岩这些不同方面的岩性特征也就成了影响可压裂性的关键因素。本文通过分析岩石力学和工程力学的相关研究成果,结合实验数据,分析总结了泥页岩岩性因素对可压裂性的影响机理。认为尽管脆性矿物的含量是定性判断泥页岩可压裂性的重要依据,但长英质矿物作为脆性指标应该建立在中强成岩作用基础上;长英质颗粒或自生矿物晶粒大、形态复杂、分布密集、有序度高,有利于提高泥页岩的可压裂性;层理发育,纹层连续性强则会降低泥页岩的可压裂性;成岩作用强,矿物之间固结紧密,泥页岩的可压裂性也会增强。在泥页岩油气勘探开发过程中,必须注意岩性差异对泥页岩可压裂性的影响。

关键词: 岩性, 泥页岩, 可压裂性, 脆性, 差异

Abstract:

The fracturing of shale is one of the keys to determine whether the shale oil and gas can be effectively developed. The differences of deposition and diagenesis usually cause significant shale heterogeneity in composition, structure, construction, diagenesis, etc. Fracturing is an essential comprehensive reflection of lithological characteristics of shale, therefore these different aspects of shale lithology are critical to its fracturing properties. We analyzed and summarized the influence mechanism of shale lithologyon fracturing. The content of brittle mineral is a qualitative judgmentfor shale fracturing; Althoughfelsic minerals is regarded as a brittleness index, the conclusionshould also build on the basis of middle-strong diagenesis. Large felsic particles or authigenic mineralgrains are usually in complex shape and possess high degree oforder, which improves the fracturing property of shale. Shale fracturing will be reduced withwell-developed and strongly continued laminae, but enhanced with diagenesis and consolidation. In the process of shale oil and gas exploration and development, we must pay attention to the difference in lithology; as it can affect the fracturing of shale.

Key words: lithology, shale, fracturing, brittleness, difference

中图分类号: 

  • P618.12

[1] 刘招君,董清水,叶松青,等.中国油页岩资源现状[J]. 吉林大学学报(地球科学版),2006,36(6):869-876. Liu Zhaojun, Dong Qingshui, Ye Songqing, et al. The Situation of Oil Shale Resources in China[J]. Journal of Jilin University( Earth Science Edition), 2006,36(6):869-876.

[2] 王冠民. 济阳坳陷古近系页岩的纹层组合及成因分类[J]. 吉林大学学报(地球科学版), 2012,42(3):666-671,680. Wang Guanmin. Laminae Combination and Genetic Classification of Eogene Shale in Jiyang Depression[J]. Journal of Jilin University( Earth Science Edition), 2012, 42(3):666-671,680.

[3] 王冠民,钟建华,马在平. 湖泊纹层状沉积物的同生期变化研究述评[J]. 世界地质,2003,22(3):231-236. Wang Guanmin, Zhong Jianhua, Ma Zaiping. Syngenetic Changes in Lacustrine Lamellar Sediments[J]. Global Geology,2003,22(3):231-236.

[4] 王冠民,钟建华. 湖泊纹层的沉积机理研究评述与展望[J]. 岩石矿物学杂志,2004,23(1):43-48. Wang Guanmnin, Zhong Jianhua. A Review and the Prospects of the Researches on Sedimentary Mechanism of Lacustrine Laminae[J]. Acta Petrologica et Mineralogica, 2004,23(1):43-48.

[5] 王冠民,高亮,马在平. 济阳坳陷沙河街组湖相页岩中风成粉砂的识别及其古气候意义[J]. 地质学报,2007,81(3):413-418,434. Wang Guanmin, Gao Liang, Ma Zaiping. Identification of Aeolian Silty Sand in Lacustrine Shale of the Shahejie Formation in the Jiyang Depression and Its Indication to Paleoclimate[J]. Acta Geologica Sinica, 2007,81(3):413-418,434.

[6] 朱筱敏. 沉积岩石学[M].北京:石油工业出版社,2008:132-136. Zu Xiaomin. Sedimentary Petrology[M].Beijing: Petroleum Industry Press,2008:132-136.

[7] 刘立,王力娟,杨永智,等. 松辽盆地南部HX井上白垩统青山口组黑色泥岩的矿物组成与自生微晶石英成因[J]. 吉林大学学报(地球科学版),2012,42(5):1358-1365. Liu Li, Wang Lijuan, Yang Yongzhi, et al. Mineral Composition and Origin of Authigenic Quartz Crystals in Black Mudstone,in Well HX,Qingshankou Formation,Upper Cretaceous,Songliao Basin[J]. Journal of Jilin University( Earth Science Edition), 2012,42(5):1358-1365.

[8] 王冠民,任拥军,钟建华,等. 济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J]. 地质学报,2005,79(6):834-838. Wang Gnanmin,Ren Yongjun, Zhong Jianhua, et al. Genetic Analysis on Lamellar Calcite Veins in Paleogene Black Shale of the Jiyang Depression[J]. Acta Geologica Sinica, 2005,79(6):834-838.

[9] Chong K K, Grieser W V,Passman A A . Completions Guide Book to Shale-Play Development: A Review of Successful Approaches to Wards Shale-Play Stimulation in the Last Two Decades[R].Pittsburg:SPE, 2010:133874.

[10] 李勇,钟建华,温志峰,等. 济阳坳陷泥质岩油气藏类型及分布特征[J]. 地质科学,2006,41(4):586-600. Li Yong, Zhong Jianhua, Wen Zhifeng, et al. Oil-Gas Accumulation Types and Distribution of Mudstone Rocks in the Jiyang Depression[J]. Scientia Geologica Sinica, 2006,41(4):586-600.

[11] 赵金洲,任岚,胡永全. 页岩储层压裂缝成网延伸的受控因素分析[J]. 西南石油大学学报(自然科学版),2013,35(1):1-8. Zhao Jinzhou, Ren Lan, Hu Yongquan. Controlling Factors of Hydraulic Fractures Extending into Network in Shale Formations[J]. Journal of Southwest Petroleum University (Science & Technology Edition) ,2013,35(1):1-8.

[12] Jesse V H. Glossary of Geology and Related Sciences[M].Washington: American Geological Institute,1960:99-102.

[13] Rickman R,Mullen M,Petre E,et al.A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are not Clones of the Barnett Shale[R].Denve: Society of Petroleum Engineers, SPE, 2008:115258.

[14] Goktan R M,Yilmaz N G.A New Methodology for the Analysis of the Relationship Between Rock Brittleness Index and Drag Pick Cutting[J]. The Journal of the South African Institute of Mining and Metallurgy, 2005,105:727-733.

[15] 袁俊亮,邓金根,张定宇,等.页岩气储层可压裂性评价技术[J].石油学报,2013,34(3):523-527. Yuan Junliang,Deng Jingen, Zhao Dingyu, et al. Fracability Evaluation of Shale-Gas Reservoirs[J]. Acta Petrolei Sinica, 2013,34(3):523-527.

[16] Zhang Z X. An Empirical Relation Between Mode I Fracture Toughness and the Tensile Strength of Rock[J].International Journal of Rock Mechanics & Mining Sciences,2002,39(3): 401-406.

[17] Li H B, Zhao J, Li T J. Triaxial Compression Tests on Agranite at Different Strain Rates and Confining Pressures[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(8): 1057-1063.

[18] Sondergeld C H,Newsham K E,Comisky J T,et al. Petrophysical Considerations in Evaluating and Producing Shale Gas Resources[R]. Pittsburg:SPE,2010:131768.

[19] Cipolla C,Weng X,Mack M,et al.Integrating Micro-seismic Mapping and Complex Fracture Modeling to Characterize Fracture Complexity[R]. Texas:Society of Petroleum Engineers, SPE,2011:140185.

[20] 陈治喜,陈勉,金衍.岩石断裂韧性与声波速度相关性的试验研究[J]. 石油钻采工艺,1997,19(5):56-75. Chen Zhixi,Chen Mian,Jin Yan. Experimental Study on the Relationship Between Rock Fracture Toughness and Acoustic Velocity[J]. Oil Drilling & Production Technology, ,1997,19(5):56-75.

[21] 张明扬,李贤庆,董泽亮,等. 皖南地区下寒武统荷塘组页岩矿物组成及脆度分析[J]. 矿物岩石地球化学通报,2015,34(1):177-183. Zhang Mingyang,Li Xianqing,Dong Zeliang, et al. Analyses on Mineral Compositions and Brittleness of the Lower Cambrian Hetang Formation Shale in South Anhui Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015,34(1):177-183.

[22] 邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653. Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China[J]. Petroleum Exploration and Development, 2010,37(6):641-653.

[23] 聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491. Nie Haikuan, Tang Xuan, Bian Ruikang. Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China[J]. Acta Petrolei Sinica, 2009,30(4):484-491.

[24] 李新景,吕宗刚,董大忠,等.北美页岩气资源形成的地质条件[J].天然气工业,2009,29(5):27-32. Li Xinjing, Lü Zonggang, Dong Dazhong, et al. Geologic Controls on Accumulation of Shale Gas in North America[J]. Natural Gas Industry, 2009,29(5):27-32.

[25] Jarvie D,Hill R J,Ruble T E,et al. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North Central Texas as one Model for Thermogenic Shale-Gas Assessment[J] AAPG Bulletin,2007,91(4):475-499.

[26] Wang F P. Production Fairway: Speed Rails in Gas Shale[C/OL]// Proceedings of the 7th Annual Gas Shale Summit,2008.Dallas: [s.n.], 2008.

[27] Nelson R A. Geologic Analysis of Naturally Fractured Reservoirs: Contribution in Petroleum Geology and Engineering[M]. Houston: Gulf Publishing Company,1985:320.

[28] 王阳,朱炎铭,陈尚斌,等.湘西北下寒武统牛蹄塘组页岩气形成条件分析[J].中国矿业大学学报,2013,42(4):586-594. Wang Yang,Zu Yanming,Chen Shangbin, et al. Formation Conditions of Shale Gas in Lower Cambrian Niutitang Formation,Northwestern Hunan[J]. Journal of China University of Mining & Technology, 2013,42(4):586-594.

[29] 胡明毅,邓庆杰,邱小松.上扬子地区下寒武统牛蹄塘组页岩气储层矿物成分特征[J].石油天然气学报(江汉石油学院学报),2013,35(5):1-6. Hu Mingyi,Deng Qingjie,Qiu Xiaosong. Characteristics of Mineral Composition of Shale Gas Reservoirs of Lower Cambrian Niutitang Formation in the Upper Yangtze Region[J]. Journal of Oil and Gas Technology, 2013,35(5):1-6.

[30] 李钜源.东营凹陷泥页岩矿物组成及脆度分析[J].沉积学报,2013,31(4):615-620. Li Juyuan. Analysis on Mineral Components and Frangibility of Shales in Dongying Depression[J]. Acta Sedimentologica Sinica,2013,31(4):615-620.

[31] 潘结南,孟召平,刘保民. 煤系岩石的成分、结构与其冲击倾向性关系[J]. 岩石力学与工程学报,2005,24(24):4422-4427. Pan Jienan, Meng Zhaoping, Liu Baomin. Relationship Between Rock Composition and Texture of Coal-Bearing Formation and Its Burst Potential[J]. Chinese Journal of Rock Mechanics and Engineering, 2005,24(24):4422-4427.

[32] 杨海博,武云云. 致密储层岩石的微观结构和力学性质试验分析[J]. 复杂油气藏,2011,4(3):10-15. Yang Haibo, Wu Yunyun. The Experimental Analysis of Microstructure and Mechanical Properties of Tight Reservoir Rocks[J]. Complex Hydrocarbon Reservoirs, 2011,4(3):10-15.

[33] 孙成才. 陆相煤系泥岩微观组构及其力学特性关联性研究[D].徐州:中国矿业大学,2015. Sun Chengcai. Association Study on Micro Fabric and Mechanical Properties of Terrestrial Coal Series Mudstone[D].Xuzhou: China University of Mining and Technology,2015.

[34] 许尚杰,尹小涛,党发宁. 晶体及矿物颗粒大小对岩土材料力学性质的影响[J]. 岩土力学, 2009,30(9):2581-2587. Xu Shangjie,Yin Xiaotao,Dang Faning. Mechanical Characteristics of Rock and Soil Affected by Particle Size of Crystal and Mineral[J]. Rock and Soil Mechanics, 2009,30(9):2581-2587.

[35] 孟召平,彭苏萍,屈洪亮. 煤层顶底板岩石成分和结构与其力学性质的关系[J]. 岩石力学与工程学报,2000,19(2):136-139. Meng Zhaoping, Peng Suping, Qu Hongliang. The Relationship Between Composition and Texture of Sedimentary Rock and Its Mechanical Properties in the Roof and Floor[J]. Chinese Journal of Rock Mechanics and Engineering, 2000,19(2):136-139.

[36] 罗诚.硬脆性泥页岩组构及其对力学特征影响研究[D].成都:西南石油大学,2013. Luo Cheng. Research on Brittle Shale Fabric and Its Mechanical Characteristics[D]. Chengdu: Southwest Petroleum University, 2013.

[37] 卫振海. 岩土材料结构性问题研究[D].北京:北京交通大学,2012. Wei Zhenhai. Research on the Geomaterials Structure[D].Beijing: Beijing Jiaotong University, 2012.

[38] Ting J M,Meachum L R, Rowell J D. Effect of Particle Shape on the Strength and Deformation Mechanisms of Ellipse-Shaped Granular Assemblages[J]. Engineering Computations, 1995, 12(2): 99-108.

[39] Lin A. Roundness of Clasts in Pseudotachylytes and Cataclastic Rocks as an Indicator of Frictional Melting[J]. Journal of Structural Geology, 1999, 21:473-478.

[40] Shinohara K, Oida M, Golman B. Effect of Particle Shape on Angle of Internal Friction by Triaxial Compression Test[J]. Powder Technology, 2000, 107: 131-136.

[41] 刘清秉,项伟,Budhu M,等.砂土颗粒形状量化及其对力学指标的影响分析[J].岩土力学,2011, 32(增刊1):190-197. Liu Qingbing, Xiang Wei, Budhu M, et al. Study of Particle Shape Quantification and Effect on Mechanical Property of Sand[J]. Rock and Soil Mechanics, 2011, 32(Sup.1):190-197.

[42] Kock I, Huhn K. Influence of Particle Shape on the Frictional Strength of Sediments: A Numerical Case Study[J].Sedimentary Geology, 2007, 196(1/2/3/4): 217-233.

[43] 史旦达,周健,刘文白,等.砂土直剪力学性状的非圆颗粒模拟与宏细观机理研究[J].岩土工程学报,2010,32(10): 1557-1565. Shi Danda, Zhou Jian, Liu Wenbai, et al. Exploring Macro-and Micro-Scale Responses of Sand in Direct Shear Tests by Numerical Simulations Using Non-Circular Particles[J]. Chinese Journal of Geotechnical Engineering, 2010,32(10): 1557-1565.

[44] 刘广,荣冠,彭俊,等. 矿物颗粒形状的岩石力学特性效应分析[J]. 岩土工程学报,2013,35(3):540-550. Liu Guang, Rong Guan, Peng Jun, et al. Mechanical Behaviors of Rock Affected by Mineral Particle Shapes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3):540-550.

[45] 张小利. 水泥混凝土骨料级配对混凝土强度的影响[J].科技风,2013(4):162. Zhang Xiaoli. Concrete Aggregate Grading on Strength of Concrete[J]. Technology Wind,2013(4):162.

[46] 胡昕,洪宝宁,王伟,等. 红砂岩强度特性的微结构试验研究[J]. 岩石力学与工程学报, 2007,26(10):2141-2147. Hu Xin, Hong Baoning, Wang Wei, et al. Experimental Study on Microstructure of Strength Property of Red Sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2007,26(10):2141-2147.

[47] 王迎春,陈剑. 红层软岩微观结构与抗剪强度关系实验分析[J]. 现代地质,2013,27(3):738-742. Wang Yingchun, Chen Jian. Preliminary Research on the Relationship Between Microscopic Structure and Shear Strength of Red-Bed Soft Rocks[J]. Geoscience, 2013,27(3):738-742.

[48] 刘珊. 结构性黏土力学特性与微观形态试验研究[D].徐州:中国矿业大学,2014. Liu Shan. Experimental Study on Mechanical Properties and Microstructure of Structural Clay[D]. Xuzhou:China University of Mining and Technology,2014.

[49] 张冲,谢润成,姚勇,等. 深层致密砂岩储层岩石结构面微观力学行为特征[J]. 断块油气田,2014,21(5):560-563. Zhang Chong, Xie Runcheng, Yao Yong, et al. Micro-Mechanical Behavior Characteristics of Rock Structure Surface for Deep Tight Sandstone Reservoir[J]. Fault-Block Oil & Gas Field, 2014,21(5):560-563.

[50] 吴涛. 页岩气层岩石脆性影响因素及评价方法研究[D].成都:西南石油大学,2015. Wu Tao. Shale Gas Reservoir Rocks and Factors Affecting the Fragility Evaluation Method[D]. Chengdu: Southwest Petroleum University, 2015.

[51] 赵文韬,侯贵廷,张居增,等. 层厚与岩性控制裂缝发育的力学机理研究:以鄂尔多斯盆地延长组为例[J]. 北京大学学报(自然科学版),2015,51(6):1047-1058. Zhao Wentao, Hou Guiting, Zhang Juzeng, et al. Study on the Development Law of Structural Fractures of Yanchang Formation in Longdong Area, Ordos Basin[J] .Acta Scientiarum Naturalium Universitatis Pekinensis, 2015,51(6):1047-1058.

[52] 杨恒林,申瑞臣,付利. 蜀南含气页岩组构与岩石力学特性[C]//2013年煤层气学术研讨会论文集. 杭州:中国石油学会,2013:459-466. Yang Henglin, Shen Ruichen, Fu Li. Gas Shale Fabric and Rock Mechanical Properties in Shunan[C]// Symposium 2013 CBM. Hangzhou: Chinese Petroleum Society,2013: 459-466.

[53] 赵明,季峻峰,陈小明,等.山东东营坳陷黏土矿物的演化与成岩作用[J].高校地质学报,2013,19(增刊):86. Zhao Ming, Ji Junfeng,Chen Xiaoming, et al. Clay Mineral Evolution and Diagenesis in Shandong Dongying Sag[J]. Geological Journal of China Universities, 2013,19(Sup.):86.

[54] 郭秋麟,陈晓明,宋焕琪,等. 泥页岩埋藏过程孔隙演化与预测模型探讨[J].天然气地球科学,2013,24(3):439-449. Guo Qiulin, Chen Xiaoming, Song Huanqi, et al. Evolution and Models of Shale Porosity During Burial Process[J]. Natural Gas Geoscience, 2013,24(3):439-449.

[1] 熊越晗, 刘东燕, 刘东升, 王艳磊, 唐小山. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1597-1604.
[2] 王恒, 姜亚楠, 张欣, 仲鸿儒, 陈庆轩, 高世臣. 基于梯度提升算法的岩性识别方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 940-950.
[3] 牟丹, 张丽春, 徐长玲. 3种经典机器学习算法在火山岩测井岩性识别中的对比[J]. 吉林大学学报(地球科学版), 2021, 51(3): 951-956.
[4] 刘培, 张向涛, 林鹤鸣, 杜家元, 冯进, 陈维涛, 梁杰, 贾培蒙. 珠江口盆地西江主洼油气差异分布机制[J]. 吉林大学学报(地球科学版), 2021, 51(1): 52-64.
[5] 高坤顺, 叶涛, 孙哲, 鲁凤婷, 陈心路, 邓辉. 渤海海域JZ25-1S太古宇潜山储层特征及其油气产能差异控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(3): 694-704.
[6] 杜玉, 张新荣, 平帅飞, 焦洁钰, 马春梅. 植硅体记录的敦化北部山地近2 ka泥炭沼泽演化气候背景[J]. 吉林大学学报(地球科学版), 2020, 50(1): 170-184.
[7] 韩启迪, 张小桐, 申维. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 611-620.
[8] 于翠玲, 李宝刚. 渤海湾盆地东营凹陷牛庄洼陷岩性油气藏平面富集主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(1): 240-247.
[9] 朱毅秀, 单俊峰, 王欢, 蔡国刚. 辽河大民屯凹陷中央构造带太古宇变质岩储层岩性特征分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1304-1315.
[10] 范雕, 李姗姗, 孟书宇, 邢志斌, 冯进凯. 利用重力异常反演马里亚纳海沟海底地形[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1483-1492.
[11] 张志, 管志超, 王少军. 结合实测光谱的ASTER TIR数据岩性划分与构造样式分析:以新疆阿克苏蓝片岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 334-342.
[12] 徐宏杰, 胡宝林, 郑建斌, 刘会虎, 张文永, 郑凯歌. 淮南煤田煤系页岩气储集空间特征及其岩相控制作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 418-430.
[13] 姜贵璞. 陆相断陷盆地油气空间互补分布成因及分布范围的确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1649-1659.
[14] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[15] 陈圣波, 于亚凤, 杨金中, 王楠, 梦华. 基于实测光谱指数法的ASTER遥感数据岩性信息提取[J]. 吉林大学学报(地球科学版), 2016, 46(3): 938-944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[2] 李宪洲,刘 研,刘丽华,宁维坤,范 海. 高岭土/肼插层材料的制备与表征[J]. J4, 2006, 36(04): 659 -662 .
[3] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .
[4] 于 平,李瑞磊,付 雷,郝 雪,张向军,廉国芬. 松辽盆地滨北地区区域构造特征及意义--地震长剖面给出的证据[J]. J4, 2005, 35(05): 611 -615 .
[5] 张原庆, 宋炳忠, 王玉福, 张宁. 鲁西铜石岩体金成矿规律和成矿预测[J]. J4, 2010, 40(6): 1287 -1294 .
[6] 李建平,李桐林,张 辉,徐凯军. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. J4, 2005, 35(06): 790 -0795 .
[7] 唐菲, 徐涵秋. 城市不透水面与地表温度定量关系的遥感分析[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1987 -1996 .
[8] 冷毅飞, 孙友宏, 杨凤学, 姜龙, 赵意民. 量热法与测温法在冻土未冻水测试中的应用[J]. J4, 2011, 41(2): 478 -483 .
[9] 刘俊来, 唐渊, 宋志杰, Tran My Dung, 翟云峰, 吴文彬, 陈文. 滇西哀牢山构造带:结构与演化[J]. J4, 2011, 41(5): 1285 -1303 .
[10] 钟宇红,房春生,邱立民,吕莉莎,张子宜,董德明,于连贵,刘 辉,刘春阳,苏红石,赵 静. 扫描电镜分析在大气颗粒物源解析中的应用[J]. J4, 2008, 38(3): 473 -0478 .