吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1124-1138.doi: 10.13278/j.cnki.jjuese.201604112

• 地质与资源 • 上一篇    下一篇

西太平洋岛弧-弧后盆地热液活动及成矿作用

石学法1,2, 李兵1, 鄢全树1,2, 叶俊1   

  1. 1. 海洋沉积与环境地质国家海洋局重点实验室, 国家海洋局第一海洋研究所, 山东 青岛 266061;
    2. 青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室, 山东 青岛 266061
  • 收稿日期:2016-04-21 出版日期:2016-07-26 发布日期:2016-07-26
  • 作者简介:石学法(1965),男,研究员,博士,主要从事海洋沉积与海底成矿作用研究,Tel:0532-88967491,E-mail:xfshi@fio.org.cn
  • 基金资助:

    国际海底区域资源研究开发"十二五"课题(DY125-12-R-05);山东省泰山学者工程(2015-11)

Hydrothermal Activities and Mineralization in the Arc and Back-Arc Basin Systems, Western Pacific

Shi Xuefa1,2, Li Bing1, Yan Quanshu1,2, Ye Jun1   

  1. 1. Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, Shandong, China;
    2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, Shandong, China
  • Received:2016-04-21 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by COMRA Research Program (DY125-12-R-05) and Taishan Scholar Program of Shandong Province(2015-11)

摘要:

岛弧-弧后盆地是海底热液硫化物发育的重要环境。本文总结了近几十年对西太平洋地区岛弧-弧后盆地热液活动调查及研究的成果,阐述了岛弧-弧后盆地热液活动的分布规律、构造环境、热液喷口水深和流体温度变化关系、相分离过程以及热液硫化物的金属元素组成特征,分析了成矿元素富集规律和控矿因素。研究认为,随着岛弧-弧后盆地热液喷口所处水深的增加,其最高喷口流体温度也相应增加,这与相分离过程有关;岛弧-弧后盆地热液硫化物与洋中脊硫化物不同,以Fe-Zn-Pb型硫化物为主,显著富集Zn、Pb、Au、Ag等金属元素;热液成矿作用主要受到岛弧及弧后扩张处的岩浆作用、相分离、基岩、弧后扩张速率、沉积物盖层等5类因素的制约。

关键词: 西太平洋, 岛弧-弧后盆地, 热液活动, 硫化物, 相分离, 控矿因素

Abstract:

Island arc and back-arc basin systems are the important seafloor environments for the development of hydrothermal sulfide resources. In this study, we reviewed the results of international investigations and numerous studies on the hydrothermal activities and the accompanying sulfide mineralization processes in the arc and back-arc basin systems over the past few decades. We summarized geographical distributions, tectonic environments, water depths, vent fluid temperatures and phase separation process for the hydrothermal activities, and the sulfide types, element accumulation characteristics, ore body scales and the main ore-forming control factors for the hydrothermal sulfides in the systems. We suggested that, the variation trendy for the water depth of vents in the systems is the same as that for maximum vent fluid temperatures, and both of them are related to the phase separation process. Hydrothermal sulfides are mainly dominated by Fe-Zn-Pb type, and significantly enriched in the metal elements such as Zn, Pb, Au, Ag, etc. Hydrothermal mineralization is mainly controlled by the following five factors, island arc and back-arc magmatism, phase separation, basement rock, back-arc spreading rate and sediment.

Key words: Western Pacific, island arc and back-arc basin system, hydrothermal activity, sulfide, phase separation, ore controlling factors, western pacific

中图分类号: 

  • P67

[1] Monecke T, Petersen S, Hannington M D. Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings[J]. Economic Geology, 2014, 109(8): 2079-2101.

[2] Hannington M, Jamieson J, Monecke T, et al. The Abundance of Seafloor Massive Sulfide Deposits[J]. Geology, 2011, 39:1155-1158.

[3] Hoagland P, Beaulieu S, Tivey M A, et al. Deep-Sea Mining of Seafloor Massive Sulfides[J]. Marine Policy, 2010, 34(3): 728-732.

[4] Kim J, Son S K, Son J W, et al. Venting Sites Along the Fonualei and Northeast Lau Spreading Centers and Evidence of Hydrothermal Activity at an Off-Axis Caldera in the Northeastern Lau Basin[J]. Geochemical Journal, 2009, 43(1): 1-13.

[5] Fouquet Y, Charlou J, Stackelberg U V, et al. Metallogenesis in Back-Arc Environments: The Lau Basin Example[J]. Economic Geology (Plus the Bulletin of the Society of Economic Geologists), 1993, 88(8): 2154-2181.

[6] Lisitsyn P, Malahoff A, Bogdanov Y A, et al. Hydrothermal Formations in the Northern Part of the Lau Basin, Pacific Ocean[J]. International Geology Review, 1992, 34(8): 828-847.

[7] Verati C, Lancelot J, Fouquet Y. Pb Isotope Study of Mineralizations at Oceanic Hydrothermal Vent Fields and Heterogeneities in the North Fiji Back-Arc Basin (SW Pacific)[J]. Comptes Rendus De l Academie Des Sciences Serie Ⅱ, 1994, 319(8): 921-928.

[8] Yukihiro N, Jun-Ichiro I, Takayoshi K, et al. Hydrothermal Plumes Along the North Fiji Basin Spreading Axis[J]. Nature, 1989, 342(6250): 667-670.

[9] Halbach P, Hansmann W, Köppel V, et al. Whole-Rock and Sulfide Lead-Isotope Data from the Hydrothermal JADE Field in the Okinawa Back-Arc Trough[J]. Mineralium Deposita, 1997, 32(1): 70-78.

[10] Kimura M, Uyeda S, Kato Y, et al. Active Hydrothermal Mounds in the Okinawa Trough Back-Arc Basin, Japan[J]. Tectonophysics, 1988, 145(3): 319-324.

[11] Scott S D, Binns R A. Hydrothermal Processes and Contrasting Styles of Mineralization in the Western Woodlark and Eastern Manus Basins of the Western Pacific[J]. Geological Society London Special Publications, 1995, 87(1): 191-205.

[12] Both R, Crook K, Taylor B, et al. Hydrothermal Chimneys and Associated Fauna in the Manus Back-Arc Basin, Papua New Guinea[J]. Eos, Transactions American Geophysical Union, 1986, 67(21): 489-490.

[13] Horibe Y, Kim K R, Craig H. Hydrothermal Methane Plumes in the Mariana Back-Arc Spreading Center[J]. Nature, 1986, 324(6093): 131-133.

[14] Baker E T, German C R. On the Global Distribution of Hydrothermal Vent Fields[C]// German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans:Geophysical Monograph Series 148.Washington, DC: American Geophysical Union, 2004: 245-266.

[15] Beaulieu S E, Baker E T, German C R. Where Are the Undiscovered Hydrothermal Vents on Oceanic Spreading Ridges? [J].Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 202-212.

[16] Halbach P Nakamura, Ko-ichi Wahsner M, et al. Probable Modern Analogue of Kuroko-Type Massive Sulphide Deposits in the Okinawa Trough Back-Arc Basin[J]. Nature, 1989, 338:496-499.

[17] Iizasa K, Fiske R S, Ishizuka O, et al. A Kuroko-Type Polymetallic Sulfide Deposit in a Submarine Silicic Caldera[J]. Science, 1999, 283(5404):975-977.

[18] 侯增谦. 现代与古代海底热水成矿作用[M]. 北京:地质出版社, 2003. Hou Zengqian. Modern and Ancient Submarine Hydrothermal Mineralization[M]. Beijing:Geological Publishing House,2003.

[19] Horibe Y, Kim K R, Craig H. Hydrothermal Methane Plumes in the Mariana Back-Arc Spreading Center[J]. Nature, 1986, 324(6093):131-133.

[20] Sakai H, Gamo T, Kim E-S, et al. Venting of Carbon Dioxide-Rich Fluid and Hydrate Formation in Mid-Okinawa Trough Back-Arc Basin[J]. Science, 1990,248(4959):1093-1096.

[21] Fouquet Y, Stackelberg U, Von Charlou J, et al. Hydrothermal Activity and Metallogenesis in the Lau Back-Arc Basin[J]. Nature, 1991, 349(6312): 778-781.

[22] 吴世迎.世界海底热液硫化物资源[M]. 北京:海洋出版社, 2000. Wu Shiying. Global Submarine Hydrothermal Sulfide Resources[M]. Beijing: Ocean Press, 2000.

[23] 吴世迎.马里亚纳海槽海底热液烟囱物研究[M]. 北京:海洋出版社, 1995. Wu Shiying. Study of Hydrothermal Chimneys in the Mariana Trough[M] . Beijing: Ocean Press, 1995.

[24] 曾志刚. 海底热液地质学[M]. 北京:科学出版社,2011. Zeng Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.

[25] Beaulieu, Stace E. InterRidge Vents Database[DB/OL]. https://www.interridge. org /zh-hans/IRvents_database, 2015.

[26] Koschinsky A, Garbe-Schönberg D, Sander S, et al. Hydrothermal Venting at Pressure-Temperature Conditions Above the Critical Point of Seawater, 5°S on the Mid-Atlantic Ridge[J]. Geology, 2008, 36(8): 615-618.

[27] Foustoukos D I , Seyfried W E. Fluid Phase Separation Processes in Submarine Hydrothermal Systems[J]. Reviews in Mineralogy and Geochemistry, 2007, 65(1):213-239.

[28] Bischoff J L, Rosenbauer R J. Liquid-Vapor Relations in the Critical Region of the System NaCl-H2O from 380 to 415℃: A Refined Determination of the Critical Point and Two-Phase Boundary of Seawater[J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2121-2126.

[29] Ellis A J, Golding R M. The Solubility of Carbon Dioxide Above 100°C in Water and in Sodium Chloride Solutions[J]. American Journal of Science, 1963, 261:47-60.

[30] Hannington M D, Ronde C, Petersen S. Seafloor Tectonics and Submarine Hydrothermal Systems[J]. Economic Geology, 2005,100 : 111-141.

[31] Fouquet Y, Cambon P, Etoubleau J, et al. Geodiversity of Hydrothermal Processes Along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit[C]// Peter A Rona, Colin W Devey, Jérôme Dyment, et al. Geophysical Monograph Series 188.Washington, DC: American Geophysical Union , 2010: 321-367.

[32] Hannington M D, Alan G, Herzig P M, et al. Comparation of the TAG Mound and Stockwork Complex with Cyprus-Type[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 1998, 158: 389-415.

[33] Petersen S, Herzig P M, Hannington M D, et al. Submarine Vein-Type Gold Mineralization Near Lihir Island, New Ireland Fore-Arc, Papua New Guinea[J]. Economic Geology, 2002, 97: 1795-1813.

[34] Yang K, Scott S D. Possible Contribution of a Metal-Rich Magmatic Fluid to a Sea-Floor Hydrothermal System[J]. Nature, 1996, 383(6599): 420-423.

[35] Susan E Humphris, Robert A Zierenberg, Lauren S Mullineaux, et al. Subseafloor Processes in Mid-Ocean Ridge Hydrothermal Systems[C]//Alt J C. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions:Geophysical Monograph Series 91.Washington, D C: American Geophysical Union, 1995: 85-114.

[36] 曾志刚, 蒋富清, 翟世奎,等. 冲绳海槽Jade热液活动区块状硫化物的铅同位素组成及其地质意义[J]. 地球化学, 2000, 29(3): 239-245. Zeng Zhigang, Jiang Fuqing, Zhai Shikui, et al. Lead Isotopic Compositions of Massive Sulfides from the Jade Hydrothermal Filed in the Okinawa Trough and Its Geological Implications[J]. Geochimica,2000, 29(3): 239-245.

[1] 李良, 孙丰月, 李世金, 李碧乐, 钱烨, 王超, 赵拓飞, 禹禄, 王冠, 霍亮, 王力, 张雅静, 王琳琳, 李浩然, 闫佳铭, 李予晋, 张得鑫, 杨延乾, 王维. 东昆仑成矿带岩浆铜镍硫化物矿床成矿地质条件与成矿规律[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1461-1496.
[2] 张贵山, 邱红信, 温汉捷, 彭仁, 孟乾坤. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740-1752.
[3] 董志国, 张连昌, 董飞羽, 张帮禄, 谢月桥, 查斌, 彭自栋, 王长乐. 西昆仑穆呼锰矿床地质特征、控矿因素及成矿模式[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1358-1372.
[4] 李堃, 刘飞, 刘凯, 赵少瑞, 汤朝阳, 段其发. 湘西-黔东地区铅锌矿床找矿模型与定量预测[J]. 吉林大学学报(地球科学版), 2020, 50(3): 825-841.
[5] 陆继龙, 范玉超, 熊玉新, 尹业长, 赵玉岩. 甘肃阳山金矿岩(矿)石中金的化学相态分析[J]. 吉林大学学报(地球科学版), 2019, 49(4): 992-1000.
[6] 殷征欣, 李正元, 沈泽中, 汤民强, 魏巍, 刘强, 谢明芮, 蔡周荣. 西太平洋帕里西维拉海盆不对称性发育特征及其成因[J]. 吉林大学学报(地球科学版), 2019, 49(1): 218-229.
[7] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[8] 郝立波,吴超,孙立吉,蒋艳明,赵玉岩,陆继龙,李杰. 吉林红旗岭铜镍硫化物矿床Re-Os同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2014, 44(2): 507-517.
[9] 赵新运,郝立波,陆继龙,赵玉岩,魏俏巧. 红旗岭矿床茶尖矿区铂族元素地球化学特征及其意义[J]. 吉林大学学报(地球科学版), 2013, 43(3): 748-757.
[10] 刘金玉, 郗爱华, 葛玉辉, 孙洪涛, 龚鹏辉. 红旗岭3号含矿岩体地质年龄及其岩石学特征[J]. J4, 2010, 40(2): 321-326.
[11] 李绪俊,郗爱华,陈 静. 脉状金矿定位预测的关键--主控矿因素分析[J]. J4, 2008, 38(5): 731-0737.
[12] 邵丕红,韩相奎,艾胜书,刘红波. 异波折板多段两相厌氧城市污水处理工艺试验研究[J]. J4, 2007, 37(4): 789-0792.
[13] 叶思源, 周永青, 丁喜桂. 浙江椒江口潮间带沉积物中痕量金属的活性态分布特征及其生物有效性[J]. J4, 2006, 36(04): 592-598.
[14] 杨言辰,孙德有,马志红,许文良. 红旗岭镁铁-超镁铁岩侵入体及铜镍硫化物矿床的成岩成矿机制[J]. J4, 2005, 35(05): 593-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[2] 李宪洲,刘 研,刘丽华,宁维坤,范 海. 高岭土/肼插层材料的制备与表征[J]. J4, 2006, 36(04): 659 -662 .
[3] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .
[4] 于 平,李瑞磊,付 雷,郝 雪,张向军,廉国芬. 松辽盆地滨北地区区域构造特征及意义--地震长剖面给出的证据[J]. J4, 2005, 35(05): 611 -615 .
[5] 张原庆, 宋炳忠, 王玉福, 张宁. 鲁西铜石岩体金成矿规律和成矿预测[J]. J4, 2010, 40(6): 1287 -1294 .
[6] 李建平,李桐林,张 辉,徐凯军. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. J4, 2005, 35(06): 790 -0795 .
[7] 丁志宏,冯平,毛慧慧. 考虑径流年内分布影响的丰枯划分方法及其应用[J]. J4, 2009, 39(2): 276 -0280 .
[8] 任何军, 刘娜,高松,张兰英,张玉玲,周睿. 假单胞菌DN2对多氯联苯的降解及bphA1核心序列测定[J]. J4, 2009, 39(2): 312 -0316 .
[9] 黄奇波, 覃小群, 刘朋雨, 康志强, 唐萍萍. 半干旱区岩溶碳汇原位监测方法适宜性研究[J]. 吉林大学学报(地球科学版), 2015, 45(1): 240 -246 .
[10] 钟宇红,房春生,邱立民,吕莉莎,张子宜,董德明,于连贵,刘 辉,刘春阳,苏红石,赵 静. 扫描电镜分析在大气颗粒物源解析中的应用[J]. J4, 2008, 38(3): 473 -0478 .