吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1199-1207.doi: 10.13278/j.cnki.jjuese.201604206
刘娜, 杨亚冬, Alberto Bento Charrua, 王航, 叶康, 吕春欣
Liu Na, Yang Yadong, Alberto Bento Charrua, Wang Hang, Ye Kang, Lü Chunxin
摘要:
将农业废弃物大豆秆在450 ℃缺氧条件下热裂解制备生物质炭。采用元素分析仪、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、光电子能谱分析(XPS)等手段对生物质炭进行理化性质分析;应用响应曲面法(RSM)下的中心合成设计(CCD)功能研究4个因素(初始pH、吸附剂质量浓度、阿特拉津质量浓度、温度)对阿特拉津去除率的影响;建立二阶模型,并通过方差分析验证二阶方程的有效性。结果表明:生物质炭表面充满孔状结构,且富含C=C、C-C、CHx、-C-OR、-COOR等官能团;吸附阿特拉津后生物质炭在羟基(-OH)的位置产生了新的吸收峰,推测羟基官能团在吸附过程中发挥了重要作用。RSM法优化最佳吸附去除阿特拉津条件为:初始阿特拉津质量浓度为5 mg/L、pH=6.67,吸附剂质量浓度为7.75 g/L、温度为32 ℃;在该条件下阿特拉津的吸附去除率达到92.18%。该研究可为评价施加生物质炭土壤中阿特拉津的迁移规律及阿特拉津污染水体修复提供参考。
中图分类号:
[1] Basfar A A, Mohamed K A, Al-Abduly A J, et al. Radiolytic Degradation of Atrazine Aqueous Solution Containing Humic Substances[J]. Ecotoxicol Environ Saf,2009, 72(3): 948-953.[2] Gao Y, Fang J, Zhang J, et al. The Impact of the Herbicide Atrazine on Growth and Photosynthesis of Seagrass, Zostera Marina (L), Seedlings[J]. Mar Pollut Bull, 2011, 62(8): 1628-1631.[3] Lasserre J P, Fack F, Revets D, et al. Effects of the Endocrine Disruptors Atrazine and PCB 153 on the Protein Expression of MCF-7 Human Cells[J]. J Proteome Res, 2009, 8: 5485-5496.[4] DeNoyelles F, Kettle W D, Sinn D E. The Responses of Plankton Communities in Experimental Ponds to Atrazine, the Most Heavily Used Pesticide in the United States[J]. Ecology, 1982, 63(5): 1285-1293.[5] Davies P E, Cook L S J, Goenarso D. Sublethal Responses to Pesticides of Several Species of Australian Freshwater Fish and Crustaceans and Rainbow Trout[J]. Environ Toxicol Chem, 1994, 13(8):1341-1354.[6] 李萃义,焦晓娟.洋河下游农灌区农作物受灾与水质污染的关系[J].中国环境监测,1996,12(4):49-51. Li Cuiyi, Jiao Xiaojuan. Relation of Plants Injury in Yang River's Irrigation with Water Pollution[J]. Environmental Monitoring in China, 1996,12(4):49-51.[7] 王立仁,赵明宇.阿特拉津在农田灌溉水及土壤中的残留分析方法及影响的研究[J].农业环境保护,2000,19(2):111-113. Wang Liren, Zhao Mingyu. An Analytical Method for Determination of Atrazine Residue in Irrigation Water and Soil, and Its Potential Effects[J]. Agriculture Environmental Protection ,2000, 19 (2): 111-113.[8] 任晋,蒋可,周怀东. 官厅水库水中阿特拉津残留的分析及污染来源[J]. 环境科学,2002,23(1):126-128. Ren Jin, Jang Ke, Zhou Huaidong. The Concentraion and Source of Atrazine Rdsidue in Water of Guanting Reservoir[J]. Enviromental Science, 2002,23(1): 126-128.[9] Khan J A, He X, Khan H M, et al. Oxidative Degradation of Atrazine in Aqueous Solution by UV/H2O2/Fe2+, UV//Fe2+ and UV//Fe2+ Processes: A Comparative Study[J]. Chem Eng J, 2013, 218: 376-383.[10] Benner J, Helbling D E, Kohler H P, et al. Is Biological Treatment a Viable Alternative for Micropollutant Removal in Drinking Water Treatment Processes?[J]. Water Res, 2013, 47(16): 5955-5976.[11] Rojas R, Morillo J, Usero J, et al. Adsorption Study of Low-Cost and Locally Available Organic Substances and a Soil to Remove Pesticides from Aqueous Solutions[J]. J Hydrol, 2015, 520: 461-472.[12] Ezazi N Z. Biofunctionalization of Zirconia Based Materials by Immobilization of Alp in Tissue Enginee-ring Applications[D]. Tampere :Tampere University of Technology,2014.[13] Wang S, Wang K, Dai C, et al. Adsorption of Pb2+ on Amino-Functionalized Core-Shell Magnetic Mesoporous SBA-15 Silica Composite[J]. Chem Eng J, 2015, 262: 897-903.[14] Srinivasan P, Sarmah A K. Characterisation of Agricultural Waste-Derived Biochars and Their Sorption Potential for Sulfamethoxazole in Pasture Soil: A Spectroscopic Investigation[J]. Sci Total Environ, 2015, 502: 471-480.[15] 曹美珠,潘丽萍,张超兰,等.四种生物质炭的表面特性及其对水溶液中镉-阿特拉津的吸附性能研究[J].农业环境科学学报,2014, 33(12): 2350-2358. Cao Meizhu, Pan Liping, Zhang Chaolan, et al. Surface Characteristics of Four Biochars and Their Adsorption of Cd and Atrazine in Aqueous Solution[J]. Journal of Agro-Environment Science, 2014, 33(12): 2350-2358.[16] 武玉,徐刚,吕迎春等.生物炭对土壤理化性质影响的研究进展[J].地球科学进展,2014,29(1):68-79. Wu Yu, Xu Gang, Lü Yingchun, et al. Effects of Biochar Amendment on Soil Physical and Chemical Properties: Current Status and Knowledge Gaps[J]. Advancesin Earth Science,2014,29(1): 68-79.[17] 杨放,李心清,王兵,等. 生物炭在农业增产和污染治理中的应用[J].地球与环境,2012,40(1):100-107. Yang Fang, Li Xinqing, Wang Bing, et al. The Application of Biochar to Improving Agricultural Production and Pollution Abatement[J]. Earth and Envirnment,2012,40(1):100-107.[18] Anupam K, Dutta S, Bhattacharjee C, et al. Adsorptive Removal of Chromium (VI) from Aqueous Solution over Powdered Activated Carbon: Optimisation Through Response Surface Methodology[J]. Chem Eng J, 2011, 173(1): 135-143.[19] Cao J, Wu Y, Jin Y, et al. Response Surface Methodology Approach for Optimization of the Removal of Chromium(VI) by NH2-MCM-41[J]. J Taiwan Inst Chem Eng, 2014, 45(3): 860-868.[20] Zhang Y, Pan B. Modeling Batch and Column Phosphate Removal by Hydrated Ferric Oxide-Based Nanocomposite Using Response Surface Methodology and Artificial Neural Network[J]. Chem Eng J, 2014, 249: 111-120.[21] Savasari M, Emadi M, Bahmanyar M A, et al. Optimization of Cd (II) Removal from Aqueous Solution by Ascorbic Acid-Stabilized Zero Valent Iron Nanoparticles Using Response Surface Methodology[J]. J Industr Chem Eng, 2015, 21: 1403-1409.[22] Wu Y, Zhou S, Qin F, et al. Modeling Physical and Oxidative Removal Properties of Fenton Process for Treatment of Landfill Leachate Using Response Surface Methodology (RSM)[J]. J Hazard Mater, 2010, 180(1/2/3): 456-465.[23] Liu N, Charrua A B, Weng C H, et al. Characterization of Biochars Derived from Agriculture Wastes and Their Adsorptive Removal of Atrazine from Aqueous Solution: A Cmparative Study[J]. Bioresource Technology, 2015, 198: 55-62.[24] Srivastava V, Weng C H, Singh V K, et al. Adsorption of Nickel Ions from Aqueous Solutions by Nano Alumina: Kinetic, Mass Transfer, and Equilibrium Studies[J]. J Chem Eng Data, 2011, 56(4): 1414-1422.[25] Kasiri M B, Khataee A R. Removal of Organic Dyes by UV/H2O2 Process: Nodelling and Optimization[J]. Environmental Technology, 2012, 33(12): 1417-1425.[26] Khataee A R.Optimization of UV-Promoted Peroxydisulphate Oxidation of CI Basic Blue 3 Using Response Surface Methodology[J]. Environmental Technology, 2010, 31(1): 73-86.[27] Zhao X, Ouyang W, Hao F, et al. Properties Comparison of Biochars from Corn Straw with Different Pretreatment and Sorption Behaviour of Atrazine[J]. Bioresour Technol, 2013, 147: 338-344.[28] Zheng W, Guo M, Chow T, et al. Sorption Properties of Greenwaste Biochar for Two Triazine Pesticides[J]. J Hazard Mater, 2010, 181(1/2/3): 121-126.[29] Chun Y, Sheng G, Chiou C T, et al. Compositions and Sorptive Properties of Crop Residue-Derived Chars[J]. Environmental Science &Technology, 2004, 38(17): 4649-4655.[30] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review[J]. Chemosphere, 2014, 99: 19-33.[31] Zhang P, Sun H, Yu L, et al. Adsorption and Catalytic Hydrolysis of Carbaryl and Atrazine on Pig Manure-Derived Biochars: Impact of Structural Properties of Biochars[J]. J Hazard Mater, 2013, 244/245: 217-224.[32] Ji L, Wan Y, Zheng S, et al. Adsorption of Tetracycline and Sulfamethoxazole on Crop Residue-Derived Ashes: Implication for the Relative Importance of Black Carbon to Soil Sorption[J].Environ Sci Technol, 2011, 45(13): 5580-5586.[33] Carrier M, Hardie A G, Uras U, et al. Production of Char from Vacuum Pyrolysis of South-African Sugar Cane Bagasse and Its Characterization as Activated Carbon and Biochar[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96: 24-32.[34] Ates F, Un U T. Production of Char from Hornbeam Sawdust and Its Performance Evaluation in the Dye Removal[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 159-166.[35] Alberto Bento Charrua,王航,吕春欣,等.不同温度下松木生物质炭对阿特拉津的吸附性能研究[J]. 生态环境学报,2015,24(3):505-510. Alberto Bento Charrua, Wang Hang, Lü Chunxin,et al. Adsorption Properties of Pinus Derived Biochar for Atrazine at Different Temperature[J]. Ecology and Environmental Sciences, 2015, 24(3): 505-510.[36] Azargohar R, Nanda S, Kozinski J A, et al. Effects of Temperature on the Physicochemical Characteristics of Fast Pyrolysis Bio-Chars Derived from Cana-dian Waste Biomass[J]. Fuel, 2014, 125: 90-100.[37] Zielke U, Huttinger K J, Hoffman W P. Surface-Oxydazed Carbon Fibers: I:Surface Struture and Chemistry[J]. Carbon , 1996,34(8): 983-998.[38] LeCroy C, Masiello C A, Rudgers J A, et al. Nitrogen, Biochar, and Mycorrhizae: Ateration of the Symbiosis and Oxidation of the Char Surface[J]. Soil Biol Biochem, 2013, 58: 248-254.[39] 孟冠华,李爱民,张全兴.活性炭的表面含氧官能团及其对吸附影响的研究进展[J]. 离子交换与吸附,2007,23(1):88-94. Meng Guanhua, Li Aimin, Zhang Quanxing, Studies on the Oxygen-Containing Groups of Activated Carbon and Their Effects on the Adsoption Character[J]. Ion Exchange and Adsorption, 2007,23(1): 88-94.[40] Chia C H, Gong B, Joseph S D, et al. Imaging of Mineral-Enriched Biochar by FTIR, Raman and SEM-EDX[J]. Vibrational Spectroscopy, 2012, 62: 248-257.[41] Zhang G, Zhang Q, Sun K, et al. Sorption of Simazine to Corn Straw Biochars Pepared at Different PyrolyticTemperatures[J].Environmental Pollution, 2012, 159: 2594-2601.[42] Zhang P, Sun H, Yu L, et al. Adsorption and Catalytic Hydrolysis of Carbaryl and Atrazine on Pig Manure-Derived Biochars: Impact of Structural Properties of Biochars[J]. Journal of Hazardous Materials, 2013, 244/245: 217-224.[43] Weng C H, Lin Y T, Hong D Y, et al. Effective Removal of Copper Ions from Aqueous Solution Using Base Treated Black Tea Waste[J]. Ecological Engineering, 2014, 67: 127-133. |
[1] | 李鱼,王檬,张琛,高茜. 基于分式析因及最佳子集回归的多种污染物复合污染特征--阿特拉津与多种污染物在松花江沉积物上的吸附效应[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1595-1602. |
[2] | 毕海涛, 张兰英, 刘娜, 杨国军, 徐国欣, 朱博麟. 无机材料对PVA-H3BO3包埋固定化方法的改进[J]. J4, 2011, 41(1): 241-246. |
[3] | 李鱼, 李娟, 高茜, 王岙. 共存镉/铜对沉积物(生物膜)中主要组分吸附阿特拉津的影响[J]. J4, 2010, 40(6): 1435-1440. |
[4] | 刘娜, 毕海涛, 任何军, 姬克宁, 郑松志. 阿特拉津低温降解菌的筛选及降解机理研究[J]. J4, 2009, 39(5): 893-898. |
[5] | 刘虹,张兰英,刘娜,刘鹏. 低温下固定化微生物降解水体中阿特拉津的效果[J]. J4, 2008, 38(6): 1027-1031. |
|