吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1191-1198.doi: 10.13278/j.cnki.jjuese.201604205

• 地质工程与环境工程 • 上一篇    下一篇

臭氧-超声联用处理聚乙烯醇废水

董德明, 曹珍, 闫征楚, 花修艺, 朱磊, 徐阳, 郭志勇, 梁大鹏   

  1. 地下水资源与环境教育部重点实验室/水资源与水环境吉林省重点实验室/吉林大学环境与资源学院, 长春 130012
  • 收稿日期:2016-02-27 出版日期:2016-07-26 发布日期:2016-07-26
  • 通讯作者: 花修艺(1976),男,教授,博士生导师,主要从事环境污染与控制化学方面的研究,E-mail:huaxy@jlu.edu.cn E-mail:huaxy@jlu.edu.cn
  • 作者简介:董德明(1957),男,教授,博士生导师,主要从事环境污染与控制化学、环境规划与评价方面的研究,E-mail:dmdong@jlu.edu.cn
  • 基金资助:

    国家科技重大专项(2012ZX07202-009);吉林省科技攻关计划重点项目(20140204035SF)

Treatment Research of Polyvinyl Alcohol Wastewater by Ozone/Ultrasound Oxidation Process

Dong Deming, Cao Zhen, Yan Zhengchu, Hua Xiuyi, Zhu Lei, Xu Yang, Guo Zhiyong, Liang Dapeng   

  1. Key Laboratory of Groundwater Resource and Environment of Ministry of Education/Key Laboratory of WaterResource and Aquatic Environment of Jilin Province/College of Environment and Resource, Jilin University, Changchun 130012, China
  • Received:2016-02-27 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China (2012ZX07202-009)and the Science and Technique Plan Key Project of Jilin Province (20140204035SF)

摘要:

本研究采用臭氧-超声(O3/US)联用技术处理聚乙烯醇(PVA)废水,分别考察了PVA初始质量浓度、初始pH、臭氧通入速率、超声功率、超声频率及反应时间对PVA和COD去除效率的影响,并在此基础上通过正交实验确定了降解PVA和COD的最佳实验条件。研究结果表明,超声频率对去除率有显著影响,PVA初始质量浓度对去除效率的影响较大,反应时间、超声功率、臭氧通入速率和初始pH的影响相对较小。通过影响实验和正交实验确定的最佳降解条件为:PVA初始质量浓度100 mg/L、初始pH=9、臭氧通入速率4 g/h、超声功率320 W、超声频率40 kHz、反应时间20 min,此时COD和PVA的去除效率分别为86.4%和99.3%。超声对臭氧降解聚乙烯醇废水具有明显的协同作用,在最佳条件下,臭氧-超声联用技术比单独臭氧技术对PVA的去除率增加了5.1%,对COD去除率增加了19.4%。

关键词: 臭氧, 超声, 聚乙烯醇废水, 影响因素, 降解

Abstract:

The present work investigates the treatment of polyvinyl alcohol (PVA) wastewater by using ozone/ultrasound(US) oxidation process. The effects of initial PVA mass concentration, the flow rate of ozone, initial pH, ultrasonic power, ultrasonic frequency, and raction time have been studied. The optimal treatment conditions for PVA and COD removal were obtained using orthogonal experiments. The results showed that ultrasonic frequency has a remarkable influence on the removal efficiency,the initial PVA mass concentration plays an important role, while reaction time, ultrasonic power, the flow rate of ozone and initial pH have minor effects in order. The maximum removal of COD and PVA could be reached under the following conditions: initial PVA mass concentration was 100 mg/L, initial pH was 9, ozone dosage was 4 g/h, ultrasonic power was 320 W, ultrasonic frequency was 40 kHz, and the reaction time was 20 minutes. Under these conditions,the removal efficiency of COD and PVA was 86.4% and 99.3%,respectively. Compared O3 with O3/US, different types of technology were operated at the same final condition to show the difference between them, the PVA removal efficiency of O3/US was 5.1% higher than O3, the COD removal efficiency of O3/US was 19.4% higher than that with the treatment of only O3 under the same optimal conditions.

Key words: ozone, ultrasound, polyvinyl alcohol wastewater, effect factors, degradation

中图分类号: 

  • X131.2

[1] 荆国华, 周作明, 李艳, 等. 臭氧氧化及其他强化技术协同降解聚乙烯醇[J]. 环境工程学报, 2008, 2(12): 1594-1598. Jing Guohua, Zhou Zuoming, Li Yan, et al. Degradation of Polyvinyl Alcohol by Ozone and Other Technology[J]. Journal of Environmental Engineering, 2008, 2(12): 1594-1598.

[2] Wang Jianlong, Xu Lejin. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(3): 251-325.

[3] Sun Yingying, Hua Xiuyi, Ge Rui, et al. Investigation on Pretreatment of Centrifugal Mother Liquid Produced in the Production of Polyvinyl Chloride by Air-Fenton Technique[J]. Environmental Science and Pollution Research, 2013, 20(8): 5797-5805.

[4] Kummerer K. Antibiotics in the Aquatic Environment: A Review Part I[J]. Chemosphere, 2009, 75(4): 417-434.

[5] 孙振世, 杨晔, 陈英旭. UV-TiO2-H2O 悬浮体系光催化降解聚乙烯醇[J]. 太阳能学报, 2004, 25(6): 760-763. Sun Zhenshi, Yang Ye, Chen Yingxu. Degradation of Polyvinyl Alcohol by UV-TiO2-H2O Photocatalysis Suspension System[J]. Journal of Solar Energy, 2004, 25(6):760-763.

[6] Lei L, Hu X, Yue P L, et al. Oxidative Degradation of Polyvinyl Alcohol by the Photochemically Enhanced Fenton Reaction[J]. Journal of Photochemistry and Photobiology:A: Chemistry, 1998, 116(2): 159-166.

[7] 刘娜,王柳,邱华,等. 生物炭催化过硫酸盐脱色偶氮染料金橙Ⅱ[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2000-2009. Liu Na, Wang Liu, Qiu Hua, et al. Biochar Catalyzed Persulfate Decoloration of Azo Dye Acid Orange 7[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(6): 2000-2009.

[8] 孙莹莹, 郭爱桐, 葛睿, 等. 铁碳微电解法预处理聚氯乙烯 (PVC) 离心母液废水[J]. 环境科学与技术, 2014, 37(4): 139-144. Sun Yingying, Guo Aitong, Ge Rui, et al. Pre-Treatment of Centrifugal Mother Liqiud in Polyvinyl Chloride Production by Iron-Carbon Microelectrolysis Technique[J]. Environmental Science and Technology, 2014, 37(4): 139-144.

[9] 邹东雷, 李萌, 邹昊辰, 等. 新型铁碳微电解填料处理含苯污染地下水的实验[J]. 吉林大学学报(地球科学版), 2010, 40(6):1441-1445. Zou Donglei, Li Meng, Zou Haochen, et al. Treatment of Benzene in Simulated Polluted Groundwater by New Iron-Carbon Micro-Electrolysis Packing[J]. Journal of Jilin University(Earth Science Edition), 2010, 40(6):1441-1445.

[10] 刘春芳. 臭氧高级氧化技术在废水处理中的研究进展[J]. 石化技术与应用, 2002, 20(4): 278-280. Liu Chunfang. The Development of the Advanced Oxidation Technologies of Ozone Wastewater Treatment[J]. Petrochemical Technology and Application, 2002, 20(4): 278-280.

[11] Tezeanli-Guyer G, InceN H. Individual and Combined Effects of Ultrasound, Ozone and UV Irradiation: A Case Study with Textile Dyes[J]. Ultrasonics ,2004, 21(8): 895-900.

[12] Beltrán F J, Encinar J M, Alonso M A. Nitroaromatic Hydrocarbon Ozonation in Water: 1: Single Ozonation[J]. Industrial and Engineering Chemistry Research, 1998, 37(1): 25-31.

[13] Goncalves A G, Orfao J J, Pereira M F. Catalytic Ozonation of Sulphamethoxazole in the Presence of Carbon Materials: Catalytic Performance and Reaction Pathways[J]. Journal of Hazardous Materials, 2012, 239/240(15): 167-174.

[14] Beltrán F J, Rivas F J, Montero-de-Espinosa R: Iron Type Catalysts for the Ozonation of Oxalic Acid in Water[J]. Water Research, 2005, 39(15): 3553-3564.

[15] 阳立平. 超声臭氧强化处理高浓度有机废水研究[D].昆明:昆明理工大学, 2004. Yang Liping, Ultrasonic Ozone Strengthening Treatment of High Concentration Organic Wastewater[D]. Kunming: Kunming University of Science and Technology, 2004.

[16] Zhou Xianjiao, Guo Wanqian, Yang Shanshan, et al. Ultrasonic-Assisted Ozone Oxidation Process of Triphenylmethane Dye Degradation: Evidence for the Promotion Effects of Ultrasonic on Malachite Green Decolorization and Degradation Mechanism[J]. Bioresource Technology. 2013, 128(1): 827-830.

[17] 葛睿, 闫征楚, 曹珍, 等. 聚氯乙烯离心母液的臭氧氧化法预处理研究[J].环境科学与技术, 2015, 38(11): 194-199. Ge Rui, Yan Zhengchu, Cao Zhen, et a1 .Pre-Treatment of Centrifugal Mother Liquid in Polyvinyl Chloride Production by Ozonation Technique[J]. Environmental Science and Technology, 2015, 38 (11): 194-199.

[18] 李茂双, 张龙, 田正菊, 等. 聚氯乙烯废水处理及回用研究[J]. 齐鲁石油化工, 2001, 29(3): 211-214. Li Maoshuang, Zhang Long, Tian Zhengju, et al. Polyvinyl Chloride Wastewater Treatment and Reuse Research[J]. Qilu Petrochemical, 2001, 29(3): 211-214.

[19] 张凌, 钟先锦, 常志显, 等. 超声波光催化协同降解对甲基苯磺酸[J]. 化学通报, 2011, 74(1): 83-87. Zhang Ling, Zhong Xianjin, Chang Zhixian, et al. Ultrasonic Wave Optical Catalytic Degradation of Methyl Benzene Sulfonic Acid[J]. Chemistry, 2011, 74(1): 83-87.

[20] Mallakpour S, Madani M, Roshandel S. Applications of Ultrasound for Modification of Zinc Oxide and Fabrication of Optically Active Poly (Amide-Imide)/Zinc Oxide Bionanocomposites[J]. Designed Monomers and Polymers, 2014, 17(4): 364-371.

[21] Saccani G, Bernasconi M, Antonelli M. Optimization of Low Energy Sonication Treatment for Granular Activated Carbon Colonizing Biomass Assessment[J]. Environmental Technology, 2014, 35(7): 851-858.

[22] Martins A B, Schein M F, Friedrich J L, et al. Ultrasound-Asisted Butyl Acetate Synthesis Catalyzed by Novozym 435: Enhanced Activity and Operational Stability[J]. Ultrasonics Sonochemistry, 2013, 20(5): 1155-1160.

[23] 高乃云, 张可佳. 超声联合臭氧在水处理中的反应机理及应用[J]. 净水技术, 2008, 27(3): 1-4. Gao Naiyun, Zhang Kejia. Ultrasonic Joint Reaction Mechanism and Application of Ozone in Water Treatment[J]. Water Purification Technology, 2008, 27(3): 1-4.

[24] Richardson B J, Larn P K S, Martin M. Emerging Chemicals of Concern: Pharmaceuticals and Personal Care Products (PPCPs) in Asia, with Particular Reference to Southern China[J]. Marine Pollution Bulletin, 2005, 50(9): 913-920.

[25] Ji G, Zhang B, Wu Y. Combined Ultrasound/Ozone Degradation of Carbazole in APG1214 Surfactant Solution[J]. Journal of Hazardous Materials, 2012, 225/226(10):1-7.

[26] 李莹. 非均相催化臭氧氧化降解草酸的实验研究[D].长春:吉林大学, 2011. Li Ying. Degradation of Oxalic Acid by Heterogeneous Catalytic Ozone[D].Changchun: Jilin University, 2011.

[27] 董德明, 宋兴, 花修艺, 等. 吉林省典型废水COD与TOC的相关关系及其形成机制和影响因素[J]. 吉林大学学报(地球科学版), 2012, 42(5): 742-752. Dong Deming, Song Xing, Hua Xiuyi, et al. Relationship Between COD and Wastewaters in Jilin Province and Main Influencing TOC of Typical and Mechanism Factors[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 742-752.

[28] 代琳琳. 臭氧预氧化在酵母废水处理中的应用研究[D].北京:北京市环境保护科学研究院, 2012. Dai Linlin. Ozone Oxidation in the Application of Yeast Wastewater Treatment Research[D].Beijing: The Environmental Protection Science Research Institute of Beijing, 2012.

[29] 顾立勇. 超声臭氧协同复合氧化物体系光催化的研究[D].镇江:江苏大学,2010. Gu Liyong. Synergism of Ultrasound, Ozone and Photocatalysis with Composite Oxide System[D]. Zhenjiang: Jiangsu University, 2010.

[30] Yang S S, Guo W Q, Cao G L, et al. Simultaneous Waste Activated Sludge Disintegration and Biological Hydrogen Production Using an Ozone/Ultrasound Pretreatment[J]. Bioresource Technology, 2012, 124(3): 347-354.

[31] Behera S K, Kim H W, Oh J E, et al. Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea[J]. The Science of the Total Environment, 2011, 409(20): 4351-4360.

[32] Hauptmann M, Frederickx F. Enhancement of Cavitation Activity and Particle Removal with Pulsed High Frequency Ultrasound and Supersaturation[J]. Ultrasonics Sonochemistry, 2013, 20(1): 69-76.

[1] 王洪桥, 白玉, . 紫外/氯工艺对水中微囊藻毒素的去除[J]. 吉林大学学报(地球科学版), 2022, 52(1): 222-.
[2] 王志恒, 梁永平, 申豪勇, 赵春红, 唐春雷, 谢浩, 赵一. 自然与人类活动叠加影响下晋祠泉域岩溶地下水动态特征[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1823-1837.
[3] 周彤, 商广明, 翟亚峰. 路基砾类填料土动力特性影响因素试验分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1482-1489.
[4] 刘金萍, 王改云, 简晓玲, 王嘹亮, 杜民, 成古. 北黄海东部次盆地层序地层格架中烃源岩发育特征与影响因素[J]. 吉林大学学报(地球科学版), 2020, 50(1): 1-17.
[5] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
[6] 朱广祥, 郭秀军, 余乐, 孙翔, 贾永刚. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1457-1465.
[7] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[8] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[9] 刘娜, 丁吉阳, 于庆民, 张思达, 赵宏君, 吕春欣. 超声强化零价铁活化过硫酸盐降解地下水中二恶烷[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1831-1837.
[10] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798.
[11] 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251.
[12] 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192.
[13] 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893.
[14] 刘娜, 梁刚, 董新维, 祁小丽, 杨悦锁, 叶康, 朴云仙. 酪氨酸酶固定化碳材料对苯酚的生物降解性能[J]. 吉林大学学报(地球科学版), 2017, 47(2): 573-579.
[15] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[2] 李宪洲,刘 研,刘丽华,宁维坤,范 海. 高岭土/肼插层材料的制备与表征[J]. J4, 2006, 36(04): 659 -662 .
[3] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .
[4] 于 平,李瑞磊,付 雷,郝 雪,张向军,廉国芬. 松辽盆地滨北地区区域构造特征及意义--地震长剖面给出的证据[J]. J4, 2005, 35(05): 611 -615 .
[5] 张原庆, 宋炳忠, 王玉福, 张宁. 鲁西铜石岩体金成矿规律和成矿预测[J]. J4, 2010, 40(6): 1287 -1294 .
[6] 李建平,李桐林,张 辉,徐凯军. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. J4, 2005, 35(06): 790 -0795 .
[7] 丁志宏,冯平,毛慧慧. 考虑径流年内分布影响的丰枯划分方法及其应用[J]. J4, 2009, 39(2): 276 -0280 .
[8] 任何军, 刘娜,高松,张兰英,张玉玲,周睿. 假单胞菌DN2对多氯联苯的降解及bphA1核心序列测定[J]. J4, 2009, 39(2): 312 -0316 .
[9] 黄奇波, 覃小群, 刘朋雨, 康志强, 唐萍萍. 半干旱区岩溶碳汇原位监测方法适宜性研究[J]. 吉林大学学报(地球科学版), 2015, 45(1): 240 -246 .
[10] 钟宇红,房春生,邱立民,吕莉莎,张子宜,董德明,于连贵,刘 辉,刘春阳,苏红石,赵 静. 扫描电镜分析在大气颗粒物源解析中的应用[J]. J4, 2008, 38(3): 473 -0478 .