吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1754-1768.doi: 10.13278/j.cnki.jjuese.201606113
尹继元1,2, 陈文1, 肖文交2, 罗勇3, 张斌1, 杨莉1, 喻顺1, 徐翠4
Yin Jiyuan1,2, Chen Wen1, Xiao Wenjiao2, Luo Yong3, Zhang Bin1, Yang Li1, Yu Shun1, Xu Cui4
摘要: 西准噶尔包古图地区发育一些小型的闪长质岩体。前人对这些小岩体开展了岩石学、年代学和地球化学等研究,然而,其成因机制和构造背景仍然存在争议,阻碍了区域构造演化和成矿作用的认识。本文在前人研究的基础上,选择包古图I号岩体为研究对象,有望揭示包古图岩体的岩石成因和构造背景。锆石U-Pb年代学研究显示,包古图I号岩体形成于(313.8±1.1)Ma。包古图I号闪长岩体以富SiO2(58.0%~59.0%)、Al2O3(16.6%~17.4%)和Sr(757×10-6~882×10-6),低的Y(14.6×10-6~15.7×10-6)和Yb(1.51×0-6~1.60×0-6)质量分数为特征,具有高的Sr/Y(50~59)值和弱的Eu异常,类似于俯冲成因的埃达克岩。另外,这些闪长岩具有较高的Mg(w(MgO)=3.46%~3.77%,Mg#=52.8~53.2),高的Cr(63.8×10-6~74.7×10-6)和Ni(45.2×10-6~49.8×10-6)质量分数,亏损HFSE(Nb,Ta和Ti)。该闪长质岩体可能由俯冲的板片熔体与上覆地幔相互作用而成。它的形成可能与西准噶尔地区晚石炭世的洋脊俯冲作用有关。
中图分类号:
[1] Defant M J,Drummond M S. Derivation of Some Mo-dern Arc Magmas by Melting of Young Subducted Lithosphere[J]. Nature, 1990, 347: 662-665. [2] Aguillon-Robles A, Calmus T, Benoit M, et al. Late Miocene Adakites and Nb-Enriched Basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise Subduction Below Southern Baja California ?[J]. Geology, 2001, 29: 531-534. [3] Sajona F G, Maury R, Bellon H, et al. High Field St-rength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines)[J]. Journal of Petrology, 1996, 37: 693-726. [4] Sajona F G, Maury R C, Bellon H, et al. Initiation of Subduction and the Generation of Slab Melts in Western and Eastern Mindanao, Philippines[J]. Geology, 1993, 21:1007-1010. [5] Gao S, Rudnick R L, Yuan H L, et al. Recycling Lo-wer Continental Crust in the North China Craton[J]. Nature, 2004, 432: 892-897. [6] Wang Q, Wyman D A, Xu J F, et al. Early Creta-ceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2609-2636. [7] Wang Q, Wyman D A, Xu J F, et al. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization[J]. The Journal of Geology, 2007, 115: 149-161. [8] Wang Q, Wyman D A, Xu J F, et al. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Tibet: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites[J]. Earth and Planetary Science Letters, 2008, 272: 158-171. [9] Castillo P R, Janney P E, Solidum R. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights into the Source of Adakite and Other Lavas in a Complex Arc Tectonic Setting[J]. Contributions to Mineralogy and Petrology, 1999, 134: 33-51. [10] Macpherson C G, Dreher S T, Thirlwall M F. Adaki-tes Without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 2006, 243:581-593. [11] Buslov M M, Fujiwara Y, Iwata K, et al. Late Pa-leozoic-Early Mesozoic Geodynamics of Central Asia[J]. Gondwana Research, 2004, 7: 791-808. [12] Jahn B M, Capdevila R, Liu D, et al. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth[J]. Journal of Asian Earth Sciences, 2004, 23: 629-653. [13] Xiao W J, Santosh M. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth[J]. Gondwana Research, 2014, 25: 1429-1444. [14] Xiao W J, Han C M, Yuan C, et al. Middle Cam-brian to Permian Subduction-Related Accretionary Orogenesis of North Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102-117. [15] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic Models for Accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 31-47. [16] 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ):后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086. Han Baofu, Ji Jianqing, Song Biao, et al. Late Paleozoic Vertical Growth of Continental Crust Around the Junggar Basin, Xinjiang, China (Part I): Timing of Postcollisional Plutonism[J]. Acta Petrologica Sinica, 2006, 22(5): 1077-1086. [17] 苏玉平, 唐红峰, 侯广顺, 等. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J]. 地球化学, 2006, 35(1): 55-67. Su Yuping, Tang Hongfeng, Hou Guangshun, et al. Geochemistry of Aluminous A-Type Granites Along Darabut Tectonic Belt in West Junggar, Xinjiang[J]. Geochemica, 2006, 35(1): 55-67. [18] 尹继元,陈文,袁超, 等. 新疆西准噶尔晚古生代侵入岩的年龄和构造意义:来自锆石LA-ICP-MS定年的证据[J]. 地球化学, 2013, 42(5): 415-430. Yin Jiyuan, Chen Wen, Yuan Chao, et al. Ages and Tectonic Implication of Late Paleozoic Plutons in the West Junggar, North Xinjiang: Evidence from LA-ICPMS Zircon Geochronology[J]. Geochimica, 2013, 42(5): 415-430. [19] Chen B,Arakawa Y. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Fold-Belt (NW China), with Implications for Phanerozoic Continental Growth[J]. Geochimica et Cosmochimica Acta, 2005, 69: 1307-1320. [20] Chen B,Jahn B M. Genesis of Post-Collisional Gran-itoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence[J]. Journal of Asian Earth Sciences, 2004, 23: 691-703. [21] Chen J F, Han B F, Ji J Q, et al. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115: 137-152. [22] 张连昌, 万博, 焦学军, 等. 西准包古图含铜斑岩的埃达克岩特征及其地质意义[J].中国地质, 2006, 33(3): 626-631. Zhang Lianchang, Wan Bo, Jiao Xuejun, et al. Characteristics and Geological Significance of Adakitic Rocks in Copper-Bearing Porphyry in Baogutu, Western Junggar[J]. Geology in China, 2006, 33(3): 626-631. [23] Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction?[J].Chemical Geology, 2009, 266(3/4): 373-398. [24] Tang G J, Wang Q, Wyman D A, et al. Ridge Sub-duction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China)[J]. Chemical Geology, 2010, 277: 281-300. [25] Yin J Y, Long X P, Yuan C, et al. A Late Carbo-niferous Slab Window: Geochronological and Geochemical Evidence from Mafic to Intermediate Dykes in West Junggar, NW China[J]. Lithos, 2013(175/176): 146-162. [26] Yin J Y, Yuan C, Sun M, et al. Late Carboniferous High-Mg Dioritic Dykes in Western Junggar, NW China: Geochemical Features, Petrogenesis and Tectonic Implications[J]. Gondwana Research, 2010, 17: 145-152. [27] Yang G X, Li Y J, Gu P Y, et al. Geochronological and Geochemical Study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for Petrogenesis and Tectonic Evolution[J]. Gondwana Research, 2012, 21: 1037-1049. [28] Yang G X, Li Y J, Santosh M, et al. Geochronology and Geochemistry of Basaltic Rocks from the Sartuohai Ophiolitic Mélange, NW China: Implications for a Devonian Mantle Plume Within the Junggar Ocean[J]. Journal of Asian Earth Sciences, 2012, 59: 141-155. [29] Yang G X, Li Y J, Yan J, et al. Geochronological and Geochemical Constraints on the Origin of the 304±5 Ma Karamay A-Type Granites from West Junggar, Northwest China: Implications for Understanding the Central Asian Orogenic Belt[J]. International Geology Review, 2014, 56: 393-407. [30] Liu Y L, Guo L S, Liu Y D. Geochronology of Bao-gutu Porphyry Copper Deposit in Western Junggar Area, Xinjiang of China[J]. Science in China:Series D:Earth Science, 2009, 52(10): 1543-1549. [31] 宋会侠, 刘玉琳, 屈文俊, 等. 新疆包古图斑岩铜矿矿床地质特征[J]. 岩石学报, 2007, 23(8): 1981-1988. Song Huixia, Liu Yulin, Qu Wenjun, et al. Geological Characters of Baogutu Porphyry Copper Deposit in Xinjiang, NW China[J]. Acta Petrologica Sinica, 2007, 23(8): 1981-1988. [32] Shen P, Shen Y C, Pan H D, et al. Geochronology and Isotope Geochemistry of the Baogutu Porphyry Copper Deposit in the West Junggar Region, Xinjiang, China[J]. Journal of Asian Earth Sciences, 2012, 49(30): 99-115. [33] 魏少妮, 朱永峰. 新疆西准噶尔包古图地区中酸性侵入体的岩石学、年代学和地球化学研究[J]. 岩石学报, 2015, 31(1): 143-160. Wei Shaoni, Zhu Yongfeng. Petrology, Geochronology and Geochemistry of Intermediate-Acidic Intrusions in Baogutu Area, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(1): 143-160. [34] Shen P, Shen Y C, Liu T B, et al. Geochemical Signature of Porphyries in the Baogutu Porphyry Copper Belt, Western Junggar, NW China[J]. Gondwana Research, 2009,16(2): 227-242. [35] 何国琦, 刘建波, 张越迁, 等. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定[J]. 岩石学报, 2007, 23(7): 1573-1576. He Guoqi, Liu Jianbo, Zhang Yueqian, et al. Keramay Ophiolitic Mélange Formed During Early Paleozoic in West Junggar Basin[J]. Acta Petrologica Sinica, 2007, 23: 1573-1576. [36] 肖序常, 汤耀庆, 冯益民. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992:1-171. Xiao Xuchang, Tang Yaoqing, Feng Yimin. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions[M]. Beijing:Geological Publishing House, 1992:1-171. [37] Zhang C, Zhai M G, Allen M B,et al. Implications of Palaeozoic Ophiolites from West Junggar, NW China, for the Tectonics of Central Asia[J]. Journal of the Geological Society of London, 1993, 150: 551-561. [38] Kwon S T, Tilton G R, Coleman R G, et al. Isotopic Studies Bearing on the Tectonics of the West Junggar Region, Xinjiang, China[J]. Tectonics, 1989, 8(4): 719-727. [39] 魏荣珠. 西准噶尔玛依勒山枕状熔岩地质特征及大地构造意义[J]. 新疆地质, 2010, 28(3): 229-235. Wei Rongzhu. The Mayileshang Pillow Lavas (Western Junggar, Xinjiang) and Their Tectonic Implications: Constraints from the Geological and Geochemical Characteristics and Rb-Sr Isochron Ages[J]. Xinjiang Geology, 2010, 28(3): 229-235. [40] 辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 2009, 25(6): 1364-1372. Gu Pingyang, Li Yongjun, Zhang Bing, et al. LA-ICP-MS Zircon U-Pb Dating of Gabbro in the Darbut Ophiolite, West Junggar, China[J]. Acta Petrologica Silica, 2009, 25(6):1364-1372. [41] Zhou T F, Yuan F, Fan Y, et al. Granites in the Sawuer Region of the West Junggar, Xinjiang, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance[J]. Lithos, 2008, 106: 191-206. [42] 郭丽爽, 刘玉琳, 王政华, 等. 西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究[J]. 岩石学报, 2010, 26(2): 471-477. Guo Lishuang, Liu Yulin, Wang Zhenghua, et al. The Zircon U-Pb LA-ICP-MS Geochronology of Volcanic Rocks in Baogutu Areas, Western Junggar[J]. Acta Petrologica Sinica, 2010, 26(2): 471-477. [43] 安芳, 朱永峰. 新疆西准噶尔包古图组凝灰岩锆石SHRIMP年龄及其地质意义[J]. 岩石学报, 2009, 25(6): 1437-1445. An Fang, Zhu Yongfeng. SHRIMP U-Pb Zircon Ages of Tuff in Baogutu Formation and Their Geological Significances[J]. Acta Petrologica Sinica, 2009, 25(6): 1437-1445. [44] 王福同.新疆维吾尔自治区古地理及地质生态图集[M].北京:中国地图出版社, 2006. Wang Futong. The Paleogeographic and Geoecological Atlas of Xinjiang Uygur Autonomous Region[M]. Beijing:Sinomaps Press, 2006. [45] 申萍, 沈远超, 潘成泽. 新疆哈图-包古图金铜矿集区锆石年龄及成矿特点[J]. 岩石学报, 2010, 26(10): 2875-2893. Shen Ping, Shen Yuanchao, Pan Chengze. Zircon Age and Metallogenic Characteristics of the Hatu-Baogutu Au-Cu Metallogenic Concentric Region in Xinjiang[J]. Acta Petrologica Sinica, 2010, 26(10): 2875-2893. [46] 唐功建, 王强, 赵振华, 等. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义[J]. 地球科学:中国地质大学学报, 2009, 34(1): 56-74. Tang Gongjian, Wang Qiang, Zhao Zhenhua, et al. Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization[J]. Earth Science:Journal of China University of Geosciences, 2009, 34(1): 56-74. [47] 魏少妮,程军峰,喻达兵, 等. 新疆包古图Ⅲ 号岩体岩石学和锆石SHRIMP年代学研究[J]. 地学前缘, 2011, 18(2): 212-222. Wei Shaoni, Cheng Junfeng, Yu Dabing, et al. Petrology and SHRIMP Zircon Ages of Intrusive Body Ⅲ in Baogutu Area, Xinjiang[J]. Earth Science Frontiers, 2011, 18(2): 212-222. [48] 尹继元,陈文,喻顺, 等. 西准噶尔包古图富镁闪长质岩墙的时代,地球化学特征以及铜金成矿意义[J]. 中国地质, 2013, 40(4): 1030-1043. Yin Jiyuan, Chen Wen, Yu Shun, et al. Age, Geochemical Features and Implications for Cu-Au Mineralization of the Magnesian Dioritic Dykes Baogutu Region of West Junggar[J]. Geology in China, 2013, 40(4): 1030-1043. [49] An F, Zhu Y. Native Antimony in the Baogutu Gold Deposit (West Junggar, NW China): Its Occurrence and Origin[J]. Ore Geology Reviews, 2010,37(3): 214-223. [50] Xia X P, Sun M, Zhao G C, et al. Spot Zircon U-Pb Isotope Analysis by ICP-MS Coupled with a Frequency Quintupled (213 nm) Nd-YAG Laser System[J]. Geochemical Journal, 2004, 38: 191-200. [51] Yuan C, Sun M, Wilde S, et al. Post-Collisional Plu-tons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-off[J]. Lithos, 2010, 119: 269-288. [52] Li X H, Li Z X, Zhou H W, et al. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia[J]. Precambrian Research, 2002, 113: 135-154. [53] Gill T B. Orogenic Andesite and Plate Tectonics[M]. Berlin:Springer-Verlag, 1981:390. [54] Sun S S,McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalt: Implications for Mantle Compositions and Processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. [55] Defant M J,Drummond M S, Mount St. Helens: Po-tential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc[J]. Geology, 1993, 21: 541-550. [56] Wang Q, Xu J F, Jian P, et al. Petrogenesis of Ada-kitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. [57] Martin H, Smithies R H, Rapp R, et al. An Over-view of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution[J]. Lithos, 2005, 79: 1-24. [58] Kay R W. Aleutian Magnesian Andesites: Melts from Subducted Pacific Ocean Crust[J]. Journal of Volcanology and Geothermal Research, 1978, 4: 117-132. [59] Chung S L, Liu D Y, Ji J Q, et al. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet[J]. Geology, 2003, 31: 1021-1024. [60] Gao R, Xiao L, Franco P, et al. Carboniferous-Per-mian Extensive Magmatism in the West Junggar, Xinjiang, Northwestern China: Its Geochemistry, Geochronology, and Petrogenesis[J]. Lithos, 2014, 204: 125-143. [61] 田陟贤, 李永军, 田猛, 等. 西准噶尔恰达地区哈尔加乌组火山岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(1): 135-145. Tian Zhixian, Li Yongjun, Tian Meng, et al. Zircon U-Pb Geochronogy, Geochemical Characteristics and Geological Significance of Volcanic Rocks of Haerjiawu Formation in Qiada, West Junggar[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1): 135-145. [62] 周鼎武, 张成立,刘颖宇. 大陆造山带基底岩块中的基性岩墙群研究:以南秦岭武当地块为例[J]. 地球科学进展, 1998, 13(2): 151-156. Zhou Dingwu, Zhang Chengli, Liu Yingyu. Study on Basic Dyke Swarms Developed in the Basement in the Continental Orogeny: An Example from Wudang Block in Southern Qinling[J]. Advance in Earth Sciences, 1998, 13(2): 151-156. [63] Zhang C L, Zou H B. Comparison Between the Per-mian Mafic Dykes in Tarim and the Western Part of Central Asian Orogenic Belt (CAOB), NW China: Implications for Two Mantle Domains of the Permian Tarim Large Igneous Province[J]. Lithos, 2013, 174: 15-27. [64] Wang B, Chen Y, Zhang S, et al. Primary Carboni-ferous and Permian Paleomagnetic Results from the Yili Block (NW China) and Their Implications on the Geodynamic Evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters, 2007, 263: 288-308. [65] Xiong X L. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite[J]. Geology, 2006, 34: 945-948. [66] Schmidta M W, Polib S. Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation[J]. Earth and Planetary Science Letters, 1998, 163: 361-379. [67] Tatsumi Y. Making Continental Crust: The Sanuki-toid Connection[J]. Chinese Science Bulletin, 2008,53(11): 1620-1633. [68] 尹继元, 袁超, 孙敏, 等. 新疆哈图早二叠世富镁闪长岩的Ar-Ar年代学,地球化学特征,及其与铜金矿化的关系[J]. 岩石学报, 2012, 28(7): 2171-2184. Yin Jiyuan, Yuan Chao, Sun Min, et al. Age, Geochemical Features and Possible Petrogenesis Mechanism of Early Permian Magnesian Diorite in Hatu, Xinjiang[J]. Acta Petrologica Sinica, 2012, 28(7): 2171-2184. [69] Cole R B, Stewart B W. Continental Margin Volca-nism at Sites of Spreading Ridge Subduction: Examples from Southern Alaska and Western California[J]. Tectonophysics, 2009, 464(1/2/3/4): 118-136. [70] Thorkelson D J. Subduction of Diverging Plates and the Principles of Slab Window Formation[J]. Tectonophysics, 1996, 255: 47-63. [71] Kay S M, Ramos V A, Marquez M. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America[J]. Journal of Geology, 1993, 101: 703-714. [72] Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical Evidence for the Melting of Subducting Oceanic Lithosphere at Plate Edges[J]. Nature, 2001, 409: 500-504. [73] Viruete J E, Contreras F, Stein G, et al. Magmatic Relationships and Ages Between Adakites, Magnesian Andesites and Nb-Enriched Basalt-Andesites from Hispaniola: Record of a Major Change in the Caribbean Island Arc Magma Sources[J]. Lithos, 2007, 99: 151-177. [74] Sun W D, Bennett V C, Eggins S M, et al. Rhenium Systematics in Submarine MORB and Back-Arc Basin Glasses: Laser Ablation ICP-MS Results[J]. Chemical Geology, 2003, 196: 259-281. [75] Hofmann A W. Chemcial Differentiation of the Ear-th: The Relationship Between Mantle, Oceanic Crust and Continental Crust[J]. Earth and Planetary Science Letters, 1988, 90: 297-314. [76] McDonough W F, Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995, 120: 223-253. [77] Rudnick R L, Gao S. Composition of the Continental Crust[C]//Heinrich D H, Turekian K K. Treatise on Geochemistry. Oxford: Pergamon, 2003: 1-64. [78] Sun W D, Ling M X, Chung S L, et al. The Genetic Association of Adakites and Cu-Au Ore Deposits[J]. International Geology Review, 2011, 53(5/6): 691-703. |
[1] | 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104. |
[2] | 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134. |
[3] | 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120. |
[4] | 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153. |
[5] | 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625. |
[6] | 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586. |
[7] | 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144. |
[8] | 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164. |
[9] | 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745. |
[10] | 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762. |
[11] | 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783. |
[12] | 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364. |
[13] | 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457. |
[14] | 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470. |
[15] | 赵院冬, 车继英, 吴大天, 许逢明, 赵君, 李士超. 小兴安岭西北部早—中侏罗世TTG花岗岩年代学、地球化学特征及构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1119-1137. |
|