吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 382-392.doi: 10.13278/j.cnki.jjuese.201702105

• 地质与资源 • 上一篇    下一篇

断陷盆地边界断层分段的层序地层响应特征——以南堡凹陷西南庄断层上盘陡坡带东营组为例

孙思敏1,2, 季汉成1,2, 刘晓3, 赵忠新3, 陈亮1,2   

  1. 1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学(北京)地球科学学院, 北京 102249;
    3. 中石油冀东油田分公司勘探开发研究院, 河北 唐山 063004
  • 收稿日期:2016-06-06 出版日期:2017-03-26 发布日期:2017-03-26
  • 作者简介:孙思敏(1967)男,讲师,博士,主要从事构造地质学、层序地层学与油气田开发地质学方面的教学与研究工作,E-mail:sun62446@163.com
  • 基金资助:
    国家科技重大专项(2011ZX05006-006)

Architecture of Sequence Stratigraphy Responding to Segmentation of Boundary Fault: Taking an Example of Dongying Formation on Hanging Wall of Xinanzhuang Fault in Nanpu Sag

Sun Simin1,2, Ji Hancheng1,2, Liu Xiao3, Zhao Zhongxin3, Chen Liang1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum, Beijing 102249, China;
    3. Research Institute of Exploration and Development, Jidong Oilfield, PetroChina, Tangshan 063004, Hebei, China
  • Received:2016-06-06 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by National Science and Technology Major Project (2011ZX05006-006)

摘要: 通过综合3D地震数据及钻井资料,以三级层序为时间单元制作了不同时期断层位移曲线和断面倾角分布图,对西南庄断层分段的断面几何学与东营组时期运动学特征进行分析。结果表明西南庄断层分段控制了其上盘褶皱几何形态。其中,向斜(半地堑)位于断层位移极大段,背斜位于断层位移极小处即断层段连接处;断层分段的几何学与运动学特征具有明显对应关系,在位移极大段,断层面较陡,而断层段连接处,断层位移较小,对应的断层倾角也较小。边界断层分段活动控制了盆地内可容纳空间、物源供应和古地貌。在断层段中央附近断层活动速率最大,物源供应速率最低,可容纳空间一直是增长的,层序内部准层序以退积和加积式叠置方式为主。而断层段连接处,断层活动速率最小,物源供应速率最高,可容纳空间以下降为主,层序内部准层序以进积式叠置方式为主。因此,沿边界断层走向断层活动性差异控制了层序内部构成样式,是控制断陷盆地陡坡带储层和烃源岩发育的主要因素。

关键词: 断陷盆地, 南堡凹陷, 边界断层分段, 层序地层, 层序构成样式

Abstract: We investigated the control of boundary fault segmentation on architecture of sequence stratigraphy in continental rift basin. Integrating 3D seismic and well data to construct map of displacement along strike on unit of third order sequence stratigraphy and dip angle on fault surface, the segmentation of Xinanzhuang fault(XNZHF) is examined based on geometry of fault surface and kinematics in period of Dongying Formation. XNZHF comprises linked segments and is an important control on hanging wall fold geometry. Synclines form at local displacement maxima, located at the centers of the fault segments, anticlines form at local displacement minima, located where fault segments link. The corrugations of fault surface apparently correlates with displacement variation, local displacement maxima corresponds with high dip angle of fault surface and the minima corresponds with low dip angle. Fault growth is a prime control on accommodation, sediment supply and physiography. High displacement rate and low sediment supply at the center of fault segment lead to predominantly aggradational/retrogradational para-sequence stacking patterns. Whereas low displacement rate and high sediment supply at boundary of fault segments show result in primarily progradational stacking patterns. The segmentation and displacement variation along strike control the stacking patterns inner sequence and is the prime control on the sand and source rock dispersal on the hanging wall of XNZHF.

Key words: rift basin, Nanpu sag, segmentation of boundary fault, sequence stratigraphy, sequence stratigraphy architecture

中图分类号: 

  • P618.13
[1] Vail P R, Mitchum R M, Thompson S. Seismic Stratigraphy and Global Changes of Sea Level:Part 3:Relative Changes of Sea Level from Coastal Onlap[J]. Antimicrobial Agents & Chemotherapy, 1997, 41(9):1859-1866.
[2] Posamentier H W, Vail P R. Geostatic Controls on Clastic Deposition II:Sequence and Systems Tracts Models[C]//Wilgus C K. Sea-level Changes:An Integrated Approach:Society of Economic Mineralogists and Paleontologists Special Publication, 1988, 42:126-154.
[3] Van Wagoner J C, Mitchum R M, Campion, K M, et al. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops:Concepts for High Resolution Correlation of Time and Facies[C]//American Association of Petroleum Geologists Methods in Exploration Series, 1990, 7:1-55.
[4] Gawthorpe R L, Leeder M R. Tectono-Sedimentary Evolution of Active Extensional Basins[J]. Basin Research,2000, 12:195-218.
[5] Gawthorpe R L, Sharp Ian, Underhill J R, et al. Linked Sequence Stratigraphic and Structural Evolution of Propagating Normal Faults[J]. Geology,1997, 9:795-798.
[6] McLeod A E, Dawers N H, Underhill J R. The Propagation and Linkage of Normal Faults:Insights from the Strathspey-Brent-Statfjord Fault Array, Northern North Sea[J]. Basin Research, 2000, 12:263-284.
[7] 林畅松,郑和荣,任建业,等. 渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制[J]. 中国科学:D辑:地球科学,2003,33(11):1125-1136. Lin Changsong, Zheng Herong, Ren Jianye, et al. The Control of Syndepositional Faulting on the Eogene Sedimentary Basin Fills of Dongying and Zhanhua Sags, Bohaiwan Rift Basin[J]. Science in China:Series D:Earth Science, 2003, 33(11):1125-1136.
[8] 李军辉. 海拉尔盆地呼和湖凹陷下白垩统层序构成样式及油气成藏模式[J]. 吉林大学学报(地球科学版),2012,42(4):961-969. Li Junhui. Sequence Architecture Pattern and Pool-Forming Pattern of Lower Cretaceous in Huhehu Depression[J]. Journal of Jilin University(Earth Science Edition), 2012,42(4):961-969.
[9] 林畅松. 沉积盆地的构造地层分析:以中国构造活动盆地研究为例[J]. 现代地质, 2006,20(2):185-194. Lin Changsong. Tectono-Stratigraphic Analysis of Sedmientary Basins:A Case Study on the Inland Tectonically Active Basins in China[J]. Geoscience, 2006,20(2):185-194.
[10] 吴永平,周立宏,王华, 等. 歧口凹陷层序构成样式的时空差异性研究[J]. 大地构造与成矿学,2010,34(4):473-483. Wu Yongping, Zhou Lihong,Wang Hua, et al. Spatiotemporal Differences of Sequence Architecture Styles in the Qikou Sag[J]. Geotectonica et Metallogenia, 2010, 34(4):473-483.
[11] 冯有良, 周海民, 任建业, 等. 渤海湾盆地东部古近系层序地层及其对构造活动的响应[J]. 中国科学:D辑:地球科学,2010,40(10):1356-1376. Feng Youliang, Zhou Haimin, Ren Jianye,et al. Sequence Stratigraphy and Its Response to Tectonic Activity in the Eastern Part of the Bohai Bay Basin[J]. Science in China:Series D:Earth Science, 2010,40(10):1356-1376.
[12] 任建业,陆永潮,张青林. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制[J]. 地球科学:中国地质大学学报, 2004, 29(5):596-602. Ren Jianye, Lu Yongchao, Zhang Qinglin. Forming Mechanism of Structural Slope-Break and Its Control on Sequence Style in Faulted Basin[J]. Earth Science:Journal of China University of Geosciences, 2004, 29(5):596-602.
[13] 侯宇光,何生,王冰洁,等. 板桥凹陷构造坡折带对层序和沉积体系的控制[J],石油学报,2010,31(5):754-761. Hou Yuguang, He Sheng,Wang Bingjie, et al. Constraints by Tectonic Slope-Break Zones on Sequences and Depositional Systems in the Banqiao Sag[J]. Acta Petrolei Sinca, 2010,31(5):754-761.
[14] 林畅松,潘元林,肖建新,等. 构造坡折带-断陷盆地层序分析和油气预测的重要概念[J]. 地球科学:中国地质大学学报, 2000,25(3):260-266. Lin Changsong, Pan Yuanlin, Xiao Jianxin, et al. Structural Slope-Break Zone:Key Concept for Stratigraphic Sequence Analysis and Petroleum Forecasting in Fault Subsidence Basins[J]. Earth Science:Journal of China Universi ty of Geosciences, 2000, 25(3):260-266.
[15] 孙思敏,彭仕宓,汪新文. 东濮凹陷兰聊断层的分段特征及其石油地质意义[J]. 石油学报,2003,24(4):27-30. Sun Simin,Peng Shimi, Wang Xinwen. Segmentation Characteristics of Lanliao Fault in Dongpu Depression[J]. Acta Petrolei Sinca, 2003,24(4):27-30.
[16] 姜华,王建波,张磊,等. 南堡凹陷西南庄断层分段活动性及其对沉积的控制作用[J]. 沉积学报,2010,28(6):1047-1053. Jiang Hua, Wang Jianbo, Zhang Lei, et al. Segment Activity of Xinanzhuang Fault in Nanpu Sag and Its Controlling on Sedimentary Process[J]. Acta Sedimentologic Sinica, 2010,28(6):1047-1053.
[17] 赵勇, 戴俊生. 应用落差分析研究生长断层[J]. 石油勘探与开发,2003, 30(3):13-16. Zhao Yong, Dai Junsheng. Identification of Growth Fault by Fault Fall Analysis[J]. Petroleum Exploration and Development,2003, 30(3):13-16.
[18] Schlische R W. Geometry and Origin of Fault-Related Folds in Extensional Settings[J]. AAPG Bulletin, 1995,79:1661-1678.
[19] Schlische R W, Anders M A. Stratigraphic Effects and Tectonic Implications of the Growth of Normal Faults and Extensional Basins[J]. Geological Society of America Special Paper,1996, 303:1-13.
[20] Gawthorpe R L, Fraser A J, Collier R E. Sequence Stratigraphy in Active Extensional Basins:Implications for the Interpretation of Ancient Basin-Fills[J]. Marine and Petroleum Geology, 1994,11(6):641-658.
[21] 张翠梅,刘晓峰,苏明. 南堡凹陷老爷庙地区构造-沉积分析[J]. 石油学报,2009, 34(5):829-834. Zhang Cuimei, Liu Xiaofeng, Su Ming. Tectono-Sedimentary Analysis of Laoyemiao Region in Nanpu Depression[J]. Acta Petrolei Sinca, 2009, 34(5):829-834.
[1] 胡欣蕾, 吕延防, 孙永河, 孙同文. 泥岩盖层内断层垂向封闭能力综合定量评价:以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718.
[2] 刘忠宝, 杜伟, 高波, 胡宗全, 张钰莹, 吴靖, 冯动军. 层序格架中富有机质页岩发育模式及差异分布:以上扬子下寒武统为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 1-14.
[3] 夏景生, 王志坤, 王海荣, 薛林, 王恺, 刘成权. 渤海湾盆地南堡凹陷西斜坡中深层“混合型河口坝”成因及沉积学意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1642-1653.
[4] 张建坤, 杨国涛, 吴吉忠, 吴鑫, 王方鲁. 黄骅坳陷北部马头营凸起馆陶组砂体成因及展布特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 48-60.
[5] 姜贵璞. 陆相断陷盆地油气空间互补分布成因及分布范围的确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1649-1659.
[6] 谭聪, 于炳松, 阮壮, 刘策, 朱玺, 谢灏辰, 罗忠. 鄂尔多斯盆地西南部延长组高分辨率层序地层划分[J]. 吉林大学学报(地球科学版), 2016, 46(2): 336-347.
[7] 杜庆祥, 郭少斌, 曹中宏, 张晓龙, 李媛姝. 南堡凹陷南部沙一段控砂模式[J]. 吉林大学学报(地球科学版), 2016, 46(2): 348-357.
[8] 郭荣涛, 赵习, 刘红光, 石开波, 刘婧, 蒋启财. 兰州盆地下白垩统碎屑岩层序地层序列:祁连山早白垩世隆升的沉积学响应[J]. 吉林大学学报(地球科学版), 2016, 46(2): 321-335.
[9] 吕延防, 韦丹宁, 孙永河, 胡明, 刘哲, 孙同文, 王海学, 许辰璐. 南堡凹陷断层对中、上部含油组合油气成藏的控制作用[J]. 吉林大学学报(地球科学版), 2015, 45(4): 971-982.
[10] 蔡来星, 卢双舫, 李昂, 石蕾, 刘爽. 松辽盆地肇州区块沙河子组层序格架特征及其对沉积和烃源岩的控制作用[J]. 吉林大学学报(地球科学版), 2015, 45(3): 724-735.
[11] 赵灿, 李旭兵, 郇金来, 陈孝红, 刘安, 危凯, 张华. 雪峰山西侧地区中上寒武统——层序地层学特征及层序格架[J]. 吉林大学学报(地球科学版), 2015, 45(2): 518-532.
[12] 姜洪福,张世广. 复杂断块油田高分辨率层序地层学及砂体几何学特征--以海塔盆地贝尔凹陷呼和诺仁油田贝301区块南屯组二段为例[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1419-1431.
[13] 郭 荣 涛. 燕山西段雾迷山组层序地层格架及古地理演化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 446-459.
[14] 魏恒飞,陈践发,郭旺,刘高志,张俊华,陈斐然. 西湖凹陷平湖组层序地层划分和聚煤特征[J]. 吉林大学学报(地球科学版), 2013, 43(3): 669-679.
[15] 王小敏,陈昭年,樊太亮,余腾孝,曹自成,何海. 巴麦地区晚石炭世碳酸盐岩台内滩储层综合评价[J]. 吉林大学学报(地球科学版), 2013, 43(2): 371-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!