吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 418-430.doi: 10.13278/j.cnki.jjuese.201702108

• 地质与资源 • 上一篇    下一篇

淮南煤田煤系页岩气储集空间特征及其岩相控制作用

徐宏杰1, 胡宝林1, 郑建斌1, 刘会虎1, 张文永2, 郑凯歌1   

  1. 1. 安徽理工大学地球与环境学院, 安徽 淮南 232001;
    2. 安徽省煤田地质局, 合肥 230088
  • 收稿日期:2016-06-07 出版日期:2017-03-26 发布日期:2017-03-26
  • 作者简介:徐宏杰(1981),副教授,博士,主要从事煤田地质和非常规油气地质勘探开发方面的教学与研究工作,E-mail:xiaonzm@163.com
  • 基金资助:
    国家自然科学基金项目(41402140,41302129);安徽省页岩气资源调查评价项目(2012-g-17);安徽省自然科学基金项目(1408085QE88)

Reservoir Characteristics and Their Lithofacies Controlling Effect of Coal-Bearing Mudstone in Huainan Coal Field

Xu Hongjie1, Hu Baolin1, Zheng Jianbin1, Liu Huihu1, Zhang Wenyong2, Zheng Kaige1   

  1. 1. School of Earth Science and Environmental Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China;
    2. Anhui Bureau of Coal Geological Exploration, Hefei 230088, China
  • Received:2016-06-07 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the National Natural Science Foundation of China(41402140,41302129), Shale Gas Investigation Project of Anhui Province (2012-g-17) and Natural Science Foundation of Anhui Province (1408085QE88)

摘要: 海陆过渡相煤系泥页岩广泛分布,具有良好的天然气资源潜力。以淮南煤田煤系泥页岩为研究对象,运用X射线衍射、扫描电镜等分析手段,对淮南煤田煤系地层泥页岩的矿物学、岩相、储层特征等方面进行相关测试,并探讨了泥岩岩相对页岩气储集空间的控制作用。研究表明:淮南煤田煤系泥页岩矿物成分中黏土矿物含量多、自生非黏土矿物相对较少,致使岩石脆性降低并对压裂裂缝产生具有负效应,但部分菱铁矿的存在可能起改善作用;存在花斑状高岭石泥岩、浅灰色高岭石泥岩、鲕状泥岩、暗色泥岩、粉砂质泥岩等5种岩相。泥页岩储层裂缝包括层面剪切缝、有机质演化异常压力缝、层间页理缝、构造裂缝等宏观类型和与石英和高岭石有关的微裂缝类型;泥页岩孔隙包括化石孔、粒间孔、粒内孔和晶间孔及可能的有机质孔等类型,为页岩气赋存提供了储集空间。不同沉积环境下的泥岩岩相不同,进而决定了矿物成分特征与有机质相对含量,对泥页岩储集空间起主要控制作用。

关键词: 煤系页岩气, 储集空间, 泥页岩, 孔隙与裂缝, 淮南煤田

Abstract: Coal measure shale of marine-terrigenous facies is widely distributed with considerable natural gas resource potential. Taking the Carboniferous-Permian coal measures in Huainan coal field as an example, the mineralogical features, lithofacies characteristics and reservoir characteristics were tested by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the controlling effect on shale gas reservoir space of mudstone facies were analyzed. The results show that the mineral composition is dominantly clay minerals with few authigenic clay minerals. Five lithofacies, i. e. kaolinite mudstone with granophyric texture, light gray kaolinite mudstone, oolitic mudstone, dark mudstone and silty mudstone, were identified in the coal measure strata. Five types of reservoir macro-fracture spaces, including shearing fracture along bedding plane, abnormal pressure fracture for organic matter evolution, interlayer lamellation fracture, structural fracture, and micro-fracture with quartz and kaolinite, and some pore types as fossil pore, interparticle pore, intragranular pore, inter-crystalline pore and possible organic matter pore. There are different lithofacies types under different sedimentary environments, and it determines their mineral composition characteristics and the organic matter content, further determines the types of reservoir pore space, and controls the development of mudstone fracture.

Key words: coal-bearing shale gas, reservoir space, shale and mudstone, pore and fracture, Huainan coal field

中图分类号: 

  • TE122.2
[1] 李昌伟,陶士振,董大忠,等. 国内外页岩气形成条件对比与有利区优选[J]. 天然气地球科学, 2015, 26(5):986-1000. Li Changwei, Tao Shizhen, Dong Dazhong, et al. Comparison of the Formation Condition of Shale Gas Between Domestic and Abroad and Favorable Areas Evaluation[J].Natural Gas Geoscience, 2015, 26(5):986-1000.
[2] 贾爱林, 位云生, 金亦秋. 中国海相页岩气开发评价关键技术进展[J]. 石油勘探与开发, 2016, 43(6):949-955. Jia Ailin, Wei Yunsheng, Jin Yiqiu. Progress in Key Technologies for Evaluating Marine Shale Gas Development in China[J]. Petroleum Exploration and Development, 2016,43(6):949-955.
[3] Zhang X,Liu C L,Zhu Y M,et al. The Characterization of a Marine Shale Gas Reservoir in the Lower Silurian Longmaxi Formation of the Northeastern Yunnan Province, China[J]. Journal of Natural Gas Science and Engineering, 2015, 27(1):321-335.
[4] 白永强,刘美,杨春梅,等. 基于AFM表征的页岩孔隙特征及其与解析气量关系[J]. 吉林大学学报(地球科学版), 2016, 46(5):1332-1341. Bai Yongqiang, Liu Mei, Yang Chunmei, et al. AFM Based Pore Characterization of Shales and Its Relation to the Analytical Gas[J]. Journal of Jilin University(Earth Science Edition), 2016,46(5):1332-1341.
[5] 付金华,郭少斌,刘新社,等. 鄂尔多斯盆地上古生界山西组页岩气成藏条件及勘探潜力[J]. 吉林大学学报(地球科学版), 2013, 43(2):382-389. Fu Jinhua, Guo Shaobin, Liu Xinshe, et al. Shale Gas Accumulation Condition and Exploration Potential of the Upper Paleozoic Shanxi Formation in Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2):382-389.
[6] 邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6):1857-1864. Zou Caineng, Zhu Rukai, Bai Bin, et al. First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value[J]. Acta Petrologica Sinica, 2011, 27(6):1857-1864.
[7] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1):69-78. Borjigin Tenger, Shen Baojian, Yu Lingjie, et al. Mechanisms of Shale Gas Generation and Accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration & Development, 2017, 44(1):69-78.
[8] Jiang S, Tang X L, Cai D S, et al. Comparison of Ma-rine, Transitional, and Lacustrine Shales:A Case Study from the Sichuan Basin in China[J]. Journal of Petroleum Science and Engineering, 2017, 150:334-347.
[9] Wang G C, Ju Y W,Bao Y, et al. Coal-Bearing Org-anic Shale Geological Evaluation of Huainan-Huaibei Coalfield, China[J]. Energy & Fuels, 2014, 28(8):5031-5042.
[10] Silva P N K De, Simons S J R, Stevens P,et al. A Comparison of North American Shale Plays with Emerging Non-Marine Shale Plays in Australia[J]. Marine and Petroleum Geology, 2015, 67:16-29.
[11] Paul C Hackley, Edgar H Guevara, Tucker F Hentz, et al. Thermal Maturity and Organic Composition of Pennsylvanian Coals and Carbonaceous Shales, North-Central Texas:Implications for Coalbed Gas Potential[J]. International Journal of Coal Geology, 2009, 77(3/4):294-309.
[12] 郑凯歌. 淮南地层小区页岩气资源潜力评价[D]. 淮南:安徽理工大学,2014:1-66. Zheng Kaige. Evaluation on Resource Potential of Shale Gas in Huainan Stratigraphic Microprovince[D]. Huainan:Anhui University of Science and Technology, 2014:1-66.
[13] Wang G C, Ju Y W, Yan Z F,et al. Pore Structure Characteristics of Coal-Bearing Shale Using Fluid Invasion Methods:A Case Study in the Huainan-Huaibei Coalfield in China[J]. Marine and Petroleum Geology, 2015, 62:1-13.
[14] Bu H L, Ju Y W, Tan J Q,et al. Fractal Charac-teristics of Pores in Non-Marine Shales from the Huainan Coalfield, Eastern China[J]. Journal of Natural Gas Science and Engineering, 2015, 24:166-177.
[15] Gareth R L Chalmers, Marc R Bustin. Porosity and Pore Size Distribution of Deeply-Buried Fine-Grained Rocks:Influence of Diagenetic and Metamorphic Processes on Shale Reservoir Quality and Exploration[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12:134-142.
[16] 兰昌益. 淮南煤田二叠纪含煤岩系的沉积环境[J]. 淮南矿业学院学报, 1984(2):10-22. Lan Changyi. The Sedimentary Environment of the Coal-Bearing Formation of the Permian Period in the Huainan Coalfield[J]. Journal of Huainan Mining Institute, 1984(2):10-22.
[17] 兰昌益. 两淮煤田石炭二叠纪含煤岩系沉积特征及沉积环境[J]. 淮南矿业学院学报, 1989(3):9-22. Lan Changyi. Sedimentary Chacrateristics and Environments of Carboniferous Permian Coal-Bearing Rock Formations in Huainan-Huaibei Coalfields[J].Journal of Huainan Mining Institute, 1989(3):9-22.
[18] 王桂梁,马文璞. 地质构造图册[M]. 北京:煤炭工业出版社,1992. Wang Guiliang, Ma Wenpu. Geological Structure Atlas[M]. Beijing:China Coal Industry Publishing House, 1992.
[19] 桑树勋,秦勇,姜波,等. 淮南地区煤层气地质研究与勘探开发潜势[J]. 天然气工业, 2001, 21(5):19-22. Sang Shuxun, Qin Yong, Jiang Bo, et al. Studies on Coalbed Methane Geology and Potential for Exploration and Development in Huainan Area[J]. Natural Gas Industry, 2001, 21(5):19-22.
[20] Robert G Loucks,Stephen C Ruppel. Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4):579-601.
[21] Shao X H, Pang X Q, Li Q W,et al. Pore Structure and Fractal Characteristics of Organic-Rich Shales:A Case Study of the Lower Silurian Longmaxi Shales in the Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2017, 80:192-202.
[22] 彭苏萍. 淮南煤田二叠系第四含煤段花斑状泥岩的特征及成因[J]. 地质论评, 1990, 36(4):326-332. Peng Suping. Characteristics and Origin of Piebald Mudstone in Permian Member D in the Huainan Coalfield[J]. Geological Review, 1990, 36(4):326-332.
[23] 龙鹏宇,张金川,唐玄,等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3):525-532. Long Pengyu, Zhang Jinchuan, Tang Xuan, et al. Feature of Muddy Shale Fissure and Its Effect for Shale Gas Exploration and Development[J]. Natural Gas Geoscience, 2011, 22(3):525-532.
[24] 张金功,袁政文. 泥质岩裂缝油气藏的成藏条件及资源潜力[J]. 石油与天然气地质, 2002, 23(4):336-338. Zhang Jingong, Yuan Zhengwen. Formation and Potential of Fractured Mudstone Resevoirs[J]. Oil & Gas Geology, 2002, 23(4):336-338.
[25] 曾联波. 低渗透砂岩油气储层裂缝及其渗流特征[J]. 地质科学, 2004, 39(1):11-17. Zen Lianbo. Fissure and Its Seepage Characteristics in Low-Permeable Sandstone Reservoir[J]. Chinese Journal of Geology, 2004, 39(1):11-17.
[26] 蒲泊伶,蒋有录,王毅,等. 四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析[J]. 石油学报, 2010, 31(2):225-230. Pu Boling, Jiang Youlu, Wang Yi, et al. Reservoir-Forming Conditions and Favorable Exploration Zones of Shale Gas in Lower Silurian Longmaxi Formation of Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(2):225-230.
[27] 韩双彪,张金川,杨超,等. 渝东南下寒武页岩纳米级孔隙特征及其储气性能[J]. 煤炭学报, 2013, 38(6):1038-1043. Han Shuangbiao, Zhang Jinchuan, Yang Chao, et al. The Characteristics of Nanoscale Pore and Its Gas Storage Capability in the Lower Cambrian Shale of Southeast Chongqing[J]. Journal of China Coal Society, 2013, 38(6):1038-1043.
[28] Robert G Loucks,Robert M Reed,Stephen C Ruppel,et al. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
[29] 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4):211-220. Yu Bingsong. Classification and Characterization of Gas Shale Pore System[J]. Earth Science Frontiers, 2013, 20(4):211-220.
[30] 刘树根,马文辛,黄文明,等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011, 27(8):2239-2252. Liu Shugen, Ma Wenxin, Huang Wenming, et al. Characteristics of the Shale Gas Reservoir Rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8):2239-2252.
[31] Wallace G Dow. Kerogen Studies and Geological In-terpretations[J]. Journal of Geochemical Exploration, 1977, 7:79-99.
[32] 陈一鸣,魏秀丽,徐欢. 北美页岩气储层孔隙类型研究的启示[J]. 复杂油气藏, 2013, 5(4):19-22. Chen Yiming, Wei Xiuli, Xu Huan. Suggestions from the Research of Pore Types of Shale Gas Reservoir in North America[J]. Small Hydrocarbon Reservoirs, 2013, 5(4):19-22.
[33] Roger M Slatt, Neal R O'Brien. Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks[J]. AAPG Bulletin, 2011, 95(12):2017-2030.
[34] 阎存章,董大忠,程克明,等.北美地区页岩气勘探开发新进展[M]. 北京:石油工业出版社, 2009:41-271. Yan Cunzhang, Dong Dazhong, Cheng Keming, et al. Progress of Shale Gas in North America[M]. Beijing:Petroleum Industry Press, 2009:41-271.
[35] 田华,张水昌,柳少波,等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3):419-427. Tian Hua, Zhang Shuichang, Liu Shaobo, et al. Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods[J]. Acta Petrolei Sinica, 2012, 33(3):419-427.
[36] 白振瑞. 遵义-綦江地区下寒武统牛蹄塘组页岩沉积特征及页岩气评价参数研究[D]. 北京:中国地质大学, 2012:67-87. Bai Zhenrui. Sedimentary Characteristics of the Lower Cambrian Niutitang Formation Shale and Evaluation Parameters of Shale Gas in Zunyi-Qijiang Area[D]. Beijing:China University of Geosciences, 2012:67-87.
[37] 蒲泊伶. 四川盆地页岩气成藏条件分析[D].东营:中国石油大学, 2008:11-24. Pu Boling. Analysis of the Reservoir-Forming Conditions of Shale Gas Potential in Sichuan Basin[D]. Dongying:China University of Petroleum(East China), 2008:11-24.
[38] 郭伟,刘洪林,李晓波,等. 滇东北黑色岩系储层特征及含气性控制因素[J]. 天然气工业, 2012, 32(9):22-27. Guo Wei, Liu Honglin, Li Xiaobo, et al. Reservoir Characteristics and Factors Controlling Gas-Bearing Capacity of Black Rocks in the Northeastern Yunnan Province[J]. Natural Gas Industry, 2012, 32(9):22-27.
[39] 李娟. 渝东南地区龙马溪组黑色页岩储层特征[D]. 北京:中国地质大学, 2013:42-62. Li Juan. Reservoir Characteristics of Longmaxi Shale in the Southeast of Chongqing[D]. Beijing:China University of Geosciences, 2013:42-62.
[40] 肖正辉,王朝晖,杨荣丰,等. 湘西北下寒武统牛蹄塘组页岩气储集条件研究[J]. 地质学报, 2013, 87(10):1612-1623. Xiao Zhenghui, Wang Chaohui, Yang Rongfeng, et al. Reservoir Conditions of Shale Gas in the Lower Cambrian Niutitang Formation, Northwestern Hunan[J]. Acta Geologica Sinica, 2013, 87(10):1612-1623.
[41] 宋传中,朱光,刘国生,等. 淮南煤田的构造厘定及动力学控制[J]. 煤田地质与勘探, 2005, 33(1):11-15. Song Chuanzhong, Zhu Guang, Liu Guosheng, et al. Identificating of Structure and Its Dynamics Control of Huainan Coalfield[J]. Coal Geology & Exploration, 2005, 33(1):11-15.
[1] 刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 285-297.
[2] 王冠民, 熊周海, 张婕. 岩性差异对泥页岩可压裂性的影响分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1080-1089.
[3] 修立君, 邵明礼, 唐华风, 董常春, 高有峰. 松辽盆地白垩系营城组火山岩孔缝单元类型和特征[J]. 吉林大学学报(地球科学版), 2016, 46(1): 11-22.
[4] 兰凯, 刘明国, 晁文学. 横观各向同性水敏性地层斜井眼坍塌压力确定[J]. 吉林大学学报(地球科学版), 2015, 45(1): 198-206.
[5] 刘福春,程日辉,解启来,胡望水,汤济广,李忠博,杨秀辉,徐浩,周隶华. 松辽盆地梨树断陷页岩气资源潜力评价[J]. 吉林大学学报(地球科学版), 2014, 44(3): 762-773.
[6] 赵飞, 罗静兰, 张有平, 王安生, 刘文峰, 吴宝成, 白雷. 克拉玛依油田六、七、九区石炭系火山岩储集层特征及其控制因素[J]. J4, 2010, 40(1): 48-55.
[7] 张艳,舒萍,王璞珺,郑常青,单玄龙. 陆上与水下喷发火山岩的区别及其对储层的影响--以松辽盆地营城组为例[J]. J4, 2007, 37(6): 1259-1265.
[8] 刘万洙,庞彦明,吴河勇,高有峰,门广田,任延广. 松辽盆地深层储层砂岩中火山碎屑物质在成岩阶段的变化与孔隙发育[J]. J4, 2007, 37(4): 698-0702.
[9] 杨双玲,刘万洙,于世泉,王国军,黄玉龙. 松辽盆地火山岩储层储集空间特征及其成因[J]. J4, 2007, 37(3): 506-0512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!