吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 431-441.doi: 10.13278/j.cnki.jjuese.201702109

• 地质与资源 • 上一篇    下一篇

不同边界条件对油页岩原位转化开采的影响及启示

马中良1,2,3,4, 郑伦举1,2,3,4, 赵中熙1,4   

  1. 1. 中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所, 江苏 无锡 214126;
    2. 页岩油气富集机理与有效开发国家重点实验室, 江苏 无锡 214126;
    3. 国家能源页岩油研发中心, 江苏 无锡 214126;
    4. 中国石油化工集团公司油气成藏重点实验室, 江苏 无锡 214126
  • 收稿日期:2016-07-07 出版日期:2017-03-26 发布日期:2017-03-26
  • 作者简介:马中良(1984-),男,工程师,主要从事油气地球化学、石油实验地质学和油页岩原位开采技术研究,E-mail:mazl.syky@sinopec.com
  • 基金资助:
    中国石化基础前瞻性项目(P13047);中国石化科技攻关项目(P14040)

Influence and Its Revelation of Oil Shale In-Situ Mining Simulation in Different Boundary Conditions

Ma Zhongliang1,2,3,4, Zheng Lunju1,2,3,4, Zhao Zhongxi1,4   

  1. 1. Wuxi Research Institute of Petroleum Geology, Exploration and Production Research Institute, Sinopec, Wuxi 214126, Jiangsu, China;
    2. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi 214126, Jiangsu, China;
    3. State Energy Center for Shale Oil Research and Development, Wuxi 214126, Jiangsu, China;
    4. Key Laboratory of Petroleum Accumulation Mechanisms, Sinopec, Wuxi 214126, Jiangsu, China
  • Received:2016-07-07 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by Basic and Prospective Research Program of Sniopec (P13047) and Science and Technology Development Project of Sniopec (P14040)

摘要: 借助于烃源岩生排烃模拟技术,开展了加热温度、加热速率、恒温时间、水质量分数等不同边界条件对油页岩原位转化开采影响的模拟实验。结果表明:升高转化温度、降低升温速率、延长恒温时间均有利于提高原位转化出油率和改善油品;流体压力过度升高对油品稍有改善,但出油率有所降低,且过高的流体压力(如超过开采层上覆岩层压力)会对地面工程产生破坏影响;高温地层水可能作为催化剂、反应物和溶剂参加反应,促进非共价键的断裂,提高出油率。在此基础上,提出了在干馏转化过程中加入额外的供氢物质或高温水中加入适量的水溶性催化剂提高油页岩原位转化开采出油率的方法。

关键词: 油页岩, 不同边界条件, 原位转化开采, 模拟实验, 页岩油

Abstract: With the hydrocarbon generation and expulsion simulation technology of source rock, a series of experiments of oil shale in-situ mining simulation was made under different boundary conditions such as heating temperature, heating rate, constant heating time, and water content. The results indicated that increasing conversion temperature and decreasing heating ramp rate, prolonging constant temperature time were conducive to improve shale oil yield and its quality of oil shale in-situ mining. Fluid pressure decreased shale oil rate, but slightly improved oil quality, but excessive fluid pressure, such as over exploitation layer overburden pressure, will have a destructive effect on surface engineering. High temperature formation water may act as catalyst, reactant and solvent in the reaction, promote non covalent bond fracture, and improve oil yield. Based on the results, a new method was proposed that during the dry distillation conversion process offering additional hydrogen material, or adding soluble catalystsin to the high temperature water, may improve shale oil yield of oil shale in-situ mining.

Key words: oil shale, different boundary conditions, in-situ mining, simulation experiment, shale oil

中图分类号: 

  • P618.12
[1] 王红岩,赵群,刘洪林,等.中国油页岩资源分布及技术进展[M].北京:石油工业出版社,2013. Wang Hongyan, Zhao Qun, Liu Honglin, et al. The Distribution and Advances in Production Technologies of Oil Shale in China[M]. Beijing:Petroleum Industry Press, 2013.
[2] 刘招君,杨虎林,董清水,等.中国油页岩[M].北京:石油工业出版社,2009. Liu Zhaojun, Yang Hulin, Dong Qingshui, et al. Oil Shale in China[M]. Beijing:Petroleum Industry Press, 2009.
[3] 钱家麟,王剑秋,李术元.世界油页岩资源利用和发展趋势[J]. 吉林大学学报(地球科学版), 2006,36(6):877-887. Qian Jialin, Wang Jianqiu, Li Shuyuan. World Oil Shale Utilization and Its Future[J]. Journal of Jilin University(Earth Science Edition),2006,36(6):877-887.
[4] 孙友宏,邓孙华,王洪艳.国际油页岩开发技术与研究进展:记第33届国际油页岩会议[J].吉林大学学报(地球科学版),2015,45(4):1052-1059. Sun Youhong, Deng Sunhua, Wang Hongyan. Advances in the Exploitation Technologies and Researches of Oil Shale in the World:Report on 33rd Oil Shale Symposium in US[J]. Journal of Jilin University(Earth Science Edition), 2015,45(4):1052-1059.
[5] 牛继辉,陈殿义.国外油页岩的地下转化开采方法[J]. 吉林大学学报(地球科学版), 2006,36(6):1027-1030. Niu Jihui, Chen Dianyi. The Existing State About Underground Mining Methods of Oil Shale[J]. Journal of Jilin University(Earth Science Edition), 2006,36(6):1027-1030.
[6] 雷怀玉,王红岩,刘德勋,等.柳树河油页岩的热解特征及动力学[J]. 吉林大学学报(地球科学版), 2012,42(1):25-29. Lei Huaiyu, Wang Hongyan, Liu Dexun, et al. Pyrolysis Characteristics and Kinetics of Liushuhe Oil Shale[J]. Journal of Jilin University(Earth Science Edition), 2012,42(1):25-29.
[7] 迟姚玲,李术元,马玉华,等.龙口油页岩热解特性及动力学研究[J].中国石油大学学报(自然科学版), 2007,31(4):112-115. Chi Yaoling, Li Shuyuan, Ma Yuhua, et al. Study of Pyrolysis Characteristics and Kinetics of Longkou Oil Shale[J].Journal of China University of Petroleum (Edition of Natural Sciences), 2007,31(4):112-115.
[8] Adnan Al-Harahsheh, Omar Al-Ayed, Moh'd Al-Harahsheh, et al. Heating Rate Effect on Fractional Yield and Composition of Oil Retorted from Ellajjun Oil Shale[J]. Journal of Analytical and Applied Pyrolysis,2010,89:239-243.
[9] Jillian L Goldfarb, Anthony D'Amico, Christopher Culin, et al. Oxidation Kinetics of Oil Shale Semicokes:Reactivity as a Function of Pyrolysis Temperature and Shale Origin[J].Energy Fuels, 2013,27:666-672.
[10] Sun Youhong, Bai Fengtian, Lü Xiaoshu, et al.A Novel Energy-Efficient Pyrolysis Process:Self-Pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizationtal Fixed Bed[J]. Scientific Reports,2015,5:1-8.
[11] 王治朝, 米敬奎, 李贤庆, 等. 生烃模拟实验方法现状与存在问题[J]. 天然气地球化学, 2009, 20(4):592-597. Wang Zhichao, Mi Jingkui, Li Xianqing, et al. Current Sitution and Problems of Simulation Experiment Approach of Hydrocarbon Generation[J].Natural Gas Geoscience, 2009, 20(4):592-597.
[12] Lewan M D, Ruble T E. Comparison of Petroleum Generation Kinetics by Isothermal Hydrous and Nonisothermal Open-System Pyrolysis[J].Organic Geochemistry, 2002,33:1457-1475.
[13] 郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009,31(3):296-302,306. Zheng Lunju, Qin Jianzhong, He Sheng, et al. Preliminary Study of Formation Porosity Thermocompression Simulation Experiment of Hydrocarbon Generation and Expulsion[J]. Petroleum Geology & Experiment, 2009,31(3):296-302,306.
[14] 马中良, 郑伦举,李志明.烃源岩有限空间温压共控生排烃模拟实验研究[J].沉积学报,2012,30(5):955-963. Ma Zhongliang, Zheng Lunju, Li Zhiming. The Thermocompression Simulation Experiment of Source Rock Hydrocarbon Generation and Expulsion in Formation Porosity[J]. Acta Sedimentologica Sinica, 2012,30(5):955-963.
[15] 天然气的组成分析气相色谱法:GB/T13610-2003[S].北京:中国标准出版社, 2003. Analysis of Natural Gas by Gas Chromatography:GB/T13610-2003[S].Beijing:China Standardization Press,2003.
[16] 中华人民共和国石油天然气行业标准岩石中可溶有机物及原油族组分分析:SY/T5119-2008[S].北京:石油工业出版社, 2008. Petroleum and Natural Gas Industry Standards of Peoples's Republic of China Analysis Method for Fractions of Rock Extract and Crude Oil:SY/T5119-2008[S].Beijing:Petroleum Industry Press,2008.
[17] 曹华,龚晶晶,汪贵峰.超压的成因及其与油气成藏的关系[J].天然气地球科学,2006,17(3):422-425. Cao Hua, Gong Jingjing, Wang Guifeng. The Cause of Overpressure and Its Relationship with Reservoir Forming[J]. Natural Gas Geoscience,2006,17(3):422-425.
[18] 郝芳,邹华耀,方勇,等.超压环境有机质热演化和生烃作用机理[J].石油学报, 2006,27(5):9-18. Hao Fang, Zou Huayao, Fang Yong, et al. Kinetics of Organic Matter Maturation and Hydrocarbon Generation in Overpressure Environment[J]. Acta Petrolei Sinica, 2006,27(5):9-18.
[19] Lewan M D. Experiments on the Role of Water in Petroleum Formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17):3691-3723.
[20] Lewan M D, Stéphanie R. Role of Water in Hydro-carbon Generation from Type-I Kerogen in Mahogany Oil Shale of the Green River Formation[J]. Organic Geochemistry, 2011(42):31-41.
[21] 王兆云,程克明, 张柏生.加水热模拟实验气态产物特征及演化规律研究[J].石油勘探与开发, 1995,22(3):36-40. Wang Zhaoyun, Cheng Keming, Zhang Baisheng. The Study on the Characteristics and Evolution Regularity of Product of Gas Under Pyrolysis Simulation Experiments[J].Petroleum Exploration and Development,1995,22(3):36-40.
[22] 王晓锋,刘文汇, 徐永昌,等.水在有机质形成气态烃演化中作用的热模拟实验研究[J].自然科学进展, 2006,16(10):1275-1280. Wang Xiaofeng, Liu Wenhui, Xu Yongchang, et al. The Thermal Simulation Experiment of Water in the Formation of Organic Evolution to Gaseous Hydrocarbons[J]. Advances in Earth Science, 2006,16(10):1275-1280.
[23] 郑伦举, 何生, 秦建中, 等. 近临界特性的地层水及其对烃源岩生排烃过程的影响[J]. 地球科学:中国地质大学学报, 2011, 36(1):83-92. Zheng Lunju, He Sheng, Qin Jianzhong, et al. Formation Water of Near-Critical Properties and Its Effects on the Processes of Hydrocarbon Generation and Expulsion[J]. Earth Science:Journal of China University of Geosciences,2011,36(1):83-92.
[24] 马跃,李术元,王娟,等.水介质条件下油页岩热解机理研究[J].燃料化学学报,2011,39(12):881-886. Ma Yue, Li Shuyuan, Wang Juan, et al. Mechanism of Oil Shale Pyrosis Under High Pressure Water[J].Journal of Fuel Chemistry and Technology, 2011,39(12):881-886.
[25] Deng Sunhua, Wang Zhijun, Gu Qiang, et al. Ex-tracting Hydrocarbon from Huadian Oil Shale by Subcritical Water[J]. Fuel Processing Technology, 2011, 92(11):1062-1067.
[26] 王炫, 段培高, 戴立益. 超(近)临界水在有机化学反应中的应用[J]. 化学通报,2005, 68(5):1-6. Wang Xuan, Duan Peigao, Dai Liyi. Application of Supercritical/Near-Critical Water in Organic Chemical Reactions[J]. Chemistry, 2005, 68(5):1-6.
[27] Paul T Williams, Hafeez M Chishti. Influence of Re-sidence Time and Catalyst Regeneration on the Pyrolysis-Zeolite Catalysis of Oil Shale[J].Journal of Analytical and Applied Pyrolysis, 2001,60:187-188.
[28] Williams P T, Ahmad N. Influence of Process Con-ditions on the Pyrolysis of Pakistani Oil Shales[J]. Fuel, 1999, 78:653-662.
[29] 李术元, 林世静, 郭绍辉,等. 矿物质对干酪根热解生烃过程的影响[J]. 石油大学学报(自然科学版), 2002, 26(1):70-74. Li Shuyuan, Lin Shijing, Guo Shaohui, et al. Catalytic Effects of Minerals on Hydrocarbon Generation in Kerogen Degradation[J].Journal of the University of Petroleum(Edition of Natural Sciences), 2002, 26(1):70-74.
[30] 王娟,金强,马国政,等.高成熟阶段膏岩等盐类物质在烃源岩热解生烃过程中的催化作用[J]. 天然气地球科学,2009,20(1):26-31. Wang Juan, Jin Qiang, Ma Guozheng, et al. Catalytic Action of Sulphate Evaporates in Pyrolytic Gas Generation of Source Rocks[J].Natural Gas Geoscience, 2009,20(1):26-31.
[31] 赵桂瑜,刘洛夫,李术元.爱沙尼亚干酪根催化降解生烃过程及动力学研究[J].沉积学报, 2004,3(22):525-528. Zhao Guiyu, Liu Luofu, Li Shuyuan. Study on Characteristics and Kinetics of Catalytic Degradation from Estonis Kerogen[J].Acta Sedimentologica Sinica, 2004,3(22):525-528.
[1] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049.
[2] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[3] 杜佰伟, 谢尚克, 董宇, 彭清华, 郑博. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 671-680.
[4] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[5] 王飞宇, 冯伟平, 关晶, 贺志勇. 湖相致密油资源地球化学评价技术和应用[J]. 吉林大学学报(地球科学版), 2016, 46(2): 388-397.
[6] 赵林, 莫惠婷, 郑义. 滨海盐碱地区包气带中淡水透镜体维持机理[J]. 吉林大学学报(地球科学版), 2016, 46(1): 195-201.
[7] 孙友宏, 邓孙华, 王洪艳. 国际油页岩开发技术与研究进展记第33届国际油页岩会议[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1052-1059.
[8] 李志明, 芮晓庆, 黎茂稳, 曹婷婷, 徐二社, 陶国亮, 蒋启贵. 北美典型混合页岩油系统特征及其启示[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1060-1072.
[9] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
[10] 孙耀庭, 徐守余, 张世奇, 徐昊清, 郭丽丽. 山东昌乐凹陷油页岩地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2015, 45(3): 736-742.
[11] 谢尚克,杜佰伟,王剑,彭清华,郑博. 西藏伦坡拉盆地油页岩特征及分布规律[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1760-1767.
[12] 吴红烛,黄志龙,杨柏松,柳波,闫玉魁,桑廷义,文川江. 马朗凹陷低熟页岩油地球化学特征及成烃机理[J]. 吉林大学学报(地球科学版), 2014, 44(1): 56-66.
[13] 孟庆涛,刘招君,胡菲,孙平昌,柳蓉,周人杰,甄甄. 桦甸盆地始新统油页岩稀土元素地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 390-399.
[14] 刘招君, 孟庆涛, 贾建亮, 孙平昌, 柳蓉, 胡晓峰. 陆相盆地油页岩成矿规律:以东北地区中、新生代典型盆地为例[J]. J4, 2012, 42(5): 1286-1297.
[15] 林学钰, 张文静, 何海洋, 石旭飞, 王寒梅, 焦珣. 人工回灌对地下水水质影响的室内模拟实验[J]. J4, 2012, 42(5): 1404-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!