吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (5): 1533-1542.doi: 10.13278/j.cnki.jjuese.201705301

• 地球探测与信息技术 • 上一篇    下一篇

重力场向下延拓的三阶Adams-Bashforth公式法

张冲1, 黄大年1, 秦朋波2, 吴国超3, 方刚4   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 国防科学技术大学机电工程与自动化学院, 长沙 410000;
    3. 浙江大学地球科学学院, 杭州 310000;
    4. 武警黄金部队第二支队, 呼和浩特 010000
  • 收稿日期:2016-12-22 出版日期:2017-09-26 发布日期:2017-09-26
  • 作者简介:张冲(1989),男,博士研究生,主要从事重磁场数据处理与解释研究,E-mail:zhangchong12@mails.jlu.edu.cn
  • 基金资助:
    国家深部探测技术与实验研究专项项目SinoPrbe-09-01(201311192);国家高技术研究发展计划("863"计划)项目(2014AA06A613)

Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field

Zhang Chong1, Huang Danian1, Qin Pengbo2, Wu Guochao3, Fang Gang4   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410000, China;
    3. School of Earth Sciences, Zhejiang University, Hangzhou 310000, China;
    4. Second Gold detachment, The Chinese Armed Police Force, Hohhot 010000, China
  • Received:2016-12-22 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Supported by Deep Exploration in China of SinoProbe-09-01 (201311192) and National High-Tech R&D Program ("863" Program)of China(2014AA06A613)

摘要: 重力场向上延拓是稳定且收敛的过程,而向下延拓是不稳定且发散的过程。为此,本文提出一种重力场向下延拓新方法。首先,对重力场及其垂向一阶导数向上延拓,得到不同高度的重力场垂向导数;然后,基于求解微分方程的三阶Adams-Bashforth多步法,推导出稳定的向下延拓公式;最后,为验证本文方法,将其分别应用于模型数据和实际数据。理论模型试验及误差曲线表明,相对于经典下延方法——傅里叶变换下延法和积分迭代下延法,新方法三阶Adams-Bashforth公式法下延过程稳定,边界效应不明显,下延深度可达5倍点距,下延结果与真实值的相对误差更小,结果更准确。将本文方法应用于加拿大某区实测航空重力数据,得到有效且准确的下延结果,能够识别和圈定一些细小异常特征。

关键词: 重力场下延, 垂向导数, Adams-Bashforth公式

Abstract: Upward continuation of gravity field is considered to be a stable and convergence process, but downward continuation is not. This paper presents a new method of downward continuation of gravity field. Firstly, the gravity field and its vertical first-order derivatives are continued upward to different height. Secondly, the authors derive with the stable downward continuation based on multistep method of Adams-Bashforth formula of third-order of the differential equation. Finally, the method is applied to the synthetic model data and the real data. Compared with the classical downward continuation methods which are the Fourier transform method and integral-iteration method, the synthetic results show that the new method, which is Adams-Bashforth formula of third-order, is more stable, less edge effect, the depth of downward continuation is 5 intervals, the relative error of the downward result and the real value is smaller, and the result is more accurate. The method is applied to the measured airborne gravity data in Canada, and the results obtained are valid and accurate. Small sources are identified and delineated.

Key words: gravity downward continuation, vertical derivative, Adams-Bashforth formula

中图分类号: 

  • P631.1
[1] 高玉文,骆遥,文武.补偿向下延拓方法研究及应用[J].地球物理学报,2012,55(8):2747-2756. Gao Yuwen, Luo Yao, Wen Wu. The Compensation Method for Downward Continuation of Potential Field from Horizontal Plane and Its Application[J]. Chinese Journal of Geophysics, 2012, 55(8):2747-2756.
[2] 张辉, 陈龙伟, 任治新,等. 位场向下延拓迭代法收敛性分析及稳健向下延拓方法研究[J]. 地球物理学报, 2009, 52(4):1107-1113. Zhang Hui, Chen Longwei, Ren Zhixin, et al. Analysis on Convergence of Iteration Method for Potential Fields Downward Continuation and Research on Robust Downward Continuation Method[J]. Chinese Journal of Geophysics, 2009, 52(2):511-518.
[3] 张志厚, 吴乐园. 位场向下延拓的相关系数法[J]. 吉林大学学报(地球科学版), 2012, 42(6):1912-1919. Zhang Zhihou, Wu Leyuan. Correlation Coefficient Method for Downward Continuation of Potential Fields[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6):1912-1919.
[4] Peters L J. The Direct Approach to Magnetic Inter-pretation and Its Practical Application[J]. Geophysics, 1949, 14(3):290.
[5] Dean W C. Frequency Analysis for Gravity and Mag-netic Interpretation[J]. Geophysics, 2002, 23(1):97.
[6] 徐世浙. 位场延拓的积分-迭代法[J]. 地球物理学报, 2006, 49(4):1176-1182. Xu Shizhe. The Integral-Iteration Method for Continuation of Potential Fields[J]. Chinese Journal of Geophysics, 2006, 49(4):1054-1060.
[7] 于德武, 龚胜平. 对迭代法位场向下延拓方法的剖析[J]. 吉林大学学报(地球科学版), 2015, 45(3):934-940. Yu Dewu, Gong Shengping. Analysis of the Potential Field Downward Continuation Iteration Method[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3):934-940.
[8] Tikhonov A N,Glasko V B,Litvinenko O K,et al. Analytic Continuation of a Potential in the Direction of Disturbing Masses by the Regularization Method[J]. Izv Earth Physics, 1968, 12:30-48.
[9] Clarke G K C. Optimum Second-Derivative and Down-ward-Continuation Filters[J]. Geophysics, 2012, 34(3), 424.
[10] Pawlowski R S. Preferential Continuation for Poten-tial-Field Anomaly Enhancement[J]. Geophysics, 1995, 60(2):390-398.
[11] 王彦国, 王祝文, 张凤旭,等. 位场向下延拓的导数迭代法[J]. 吉林大学学报(地球科学版), 2012, 42(1):240-245. Wang Yanguo, Wang Zhuwen, Zhang Fengxu, et al. Derivative-Iteration Method for Downward Continuation of Potential Fields[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1):240-245.
[12] 陈生昌, 肖鹏飞. 位场向下延拓的波数域广义逆算法[J]. 地球物理学报, 2007, 50(6):1816-1822. Chen Shengchang, Xiao Pengfei. Wavenumber Domain Generalized Inverse Algorithm for Potential Field Downward Continuation[J]. Chinese Journal of Geophysics, 2007, 50(6):1571-1579.
[13] Blakely R J. Potential Theory in Gravity and Mag-netic Applications[M]. Cambridge:Cambridge University Press, 2003.
[14] 曾华霖. 重力场与重力勘探[M]. 北京:地质出版社, 2005. Zeng Hualin. Gravity Field and Gravity Exploration[M]. Beijing:Geological Publishing House, 2005.
[15] Fedi M, Florio G. A Stable Downward Continuation by Using the ISVD Method[J]. Geophysical Journal International, 2002, 151(1):146-156.
[16] Fornberg B. Calculation of Weights in Finite Diffe-rence Formulas[J]. Siam Review, 2002, 40(3):685-691.
[17] 刘冬兵. 四阶Adams-Bashforth组合公式的预估-校正方法的对比试验[J]. 西昌学院学报(自然科学版), 2012, 26(3):43-46. Liu Dongbing. The Comparative Test of Fourth Order Adams-Bashforth Combination Formula Predictor-Corrector Methods[J]. Journal of Xichang College (Natural Science Edition), 2012, 26(3):43-46.
[18] 王新民,朱洪亮.工程数据:计算方法[M]. 北京:高等教育出版社, 2005. Wang Xinmin,Zhu Hongliang. Engineering Mathematics:Numerical Methods[M]. Beijing:Higher Education Press, 2005.
[19] Butcher J C. Numerical Methods for Ordinary Diffe-rential Equations[M]. Hoboken:Wiley, 2008.
[20] 刘东甲, 洪天求, 贾志海,等. 位场向下延拓的波数域迭代法及其收敛性[J]. 地球物理学报, 2009, 52(6):1599-1605. Liu Dongjia, Hong Tianqiu, Jia Zhihai, et al. Wave Number Domain Iteration Method for Downward Continuation of Potential Fields and Its Convergence[J]. Chinese Journal of Geophysics, 2009, 52(6):1599-1605.
[21] 于波, 翟国君, 刘雁春,等. 噪声对磁场向下延拓迭代法的计算误差影响分析[J]. 地球物理学报, 2009, 52(8):2182-2188. Yu Bo, Zhai Guojun, Liu Yanchun, et al. Analysis of Noise Effect on the Calculation Error of Downward Continuation with Iteration Method[J]. Chinese Journal of Geophysics, 2009, 52(8):2182-2188.
[22] 姚长利, 李宏伟, 郑元满,等. 重磁位场转换计算中迭代法的综合分析与研究[J]. 地球物理学报, 2012, 55(6):2062-2078. Yao Changli, Li Hongwei, Zheng Yuanman, et al. Research on Iteration Method Using in Potential Field Transformations[J]. Chinese Journal of Geophysics, 2012, 55(6):2062-2078.
[1] 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221-1230.
[2] 杜威, 许家姝, 吴燕冈, 郝梦成. 位场垂向高阶导数的Tikhonov正则化迭代法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 394-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!