吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (5): 1543-1551.doi: 10.13278/j.cnki.jjuese.201705302

• 地球探测与信息技术 • 上一篇    下一篇

钢厂周边污染土壤的电性与磁性特征及其环境意义

李永涛1, 郭高山1, 顾延生2, 韦林1, 何思远1   

  1. 1. 中国地质大学(武汉)地球物理与空间信息学院, 武汉 430074;
    2. 中国地质大学(武汉)环境学院, 武汉 430074
  • 收稿日期:2017-01-09 出版日期:2017-09-26 发布日期:2017-09-26
  • 作者简介:李永涛(1961),男,教授,博士,主要从事地球物理学和环境磁学研究,E-mail:ytli@cug.edu.cn
  • 基金资助:
    国家自然科学基金项目(41572153);湖北省科技支撑计划资助项目(2015BCE077)

Electric and Magnetic Properties of Contaminated Soil Around a Steel Plant as Well as Their Environmental Significance

Li Yongtao1, Guo Gaoshan1, Gu Yansheng2, Wei Lin1, He Siyuan1   

  1. 1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China;
    2. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
  • Received:2017-01-09 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Supported by Natural Science Foundation of China (41572153)and Science and Technology Supporting Project of Hubei Province (2015BCE077)

摘要: 利用直流电测深、环境磁学以及矿物学方法,开展对一钢铁厂周边土壤的污染评价研究,获得了土壤垂向电阻率与磁化率分布特征。研究表明,随着污染土剖面的深度由底部至地表,土壤电阻率逐渐减小,磁化率和重金属含量反而增高;该变化特征反映了土壤受污染的程度与钢铁公司历年粗钢产量及武汉市历年汽车保有量的变化程度相对应。通过对污染样品的磁滞回线、热磁曲线和SEM/EDX等矿物学分析,污染样品的矿物成分以磁铁矿和赤铁矿为主,以准单畴(PSD)颗粒存在,形貌特征和物质成分与成土过程中形成的磁性颗粒明显不同。由于土壤的电性与磁性都具有良好的污染程度指示作用,所以土壤的电性与磁性研究可以应用于土壤污染程度的评价,两者联合运用可大大提高土壤污染程度评价的分辨率。

关键词: 钢厂, 污染土壤, 电性, 磁性, 重金属, 环境意义

Abstract: The distributing properties of vertical resistivity and susceptibility of soils around an iron and steel plant have been obtained for pollution assessment using DC depth sounding, environmental magnetism and mineralogy. The study shows that soil resistivity values decrease gradually, while susceptibility and heavy metal content increase from the bottom to the surface of the contaminated soils, indicating a correspondence between the degree of soil pollution and the crude steel output each year and the vehicle numbers of Wuhan City. Through the analyses on hysteresis loop, thermal magnetic curve, and SEM/EDX mineralogy for the contaminated samples, the mineral components of polluted samples are predominantly magnetite and hematite, existing in pseudo-single domain (PSD), obviously different from the magnetic grain formed during pedogenic process in aspect of feature and ingredient. Because the electric and magnetic properties of soil have good indication to pollution degree, the study of soil electric and magnetic properties can be used to assess soil pollution, and the combined use of these two properties can also greatly improve the resolution of soil pollution assessment.

Key words: steel plant, contaminated soil, electric property, magnetic property, heavy metal, environmental significance

中图分类号: 

  • P631.2
[1] Kaminski M D, Landsberger S. Heavy Metal in Urban Soil of East St Louis, IL, Part 1:Total Concentration of Heavy Metal in Soil[J]. Journal of the Air and Waste Management Association, 2000, 50(9):1667-1679.
[2] 沈明洁,胡守云,U Blaha,等. 北京石景山工业区附近一个污染土壤剖面的磁学研究[J]. 地球物理学报,2006,49(6):1665-1673. Shen Mingjie, Hu Shouyun, Blaha U, et al. A Magnetic Study of a Polluted Soil Profile at the Shijingshan Industrial Area, Western Beijing, China Chinese[J]. Geophysics, 2006, 49(6):1665-1673.
[3] 王学松.城市表层土壤重金属富集淋滤特征与磁学响应[M]. 北京:中国环境科学出版社,2009. Wang Xuesong. City Surface Soil Heavy Metal Accumulation and Leaching Characteristics of Magnetic Response[M]. Beijing:China Environment Science Press, 2009.
[4] 孙亚坤,刘玉强,能昌信,等. 污染土电阻率特性及电阻率法检测的应用研究进展[J]. 环境科学与技术, 2011, 34(12H):165-171. Sun Yakun, Liu Yuqiang, Neng Changxin, et al. Development of Resistivity Method in the Investigation of Contaminated Soils[J]. Environment Science & Technology, 2011, 34(12H):165-171.
[5] Delaney A J, Peapples P R, Arcone S A. Electrical Resistivity of Frozen and Petroleum-Contaminated Fine-Grained Soil[J]. Cold Regions Science Technology, 2001, 32(2):107-119.
[6] Han F X, Banin A, Kingery W L, et al. New App-roach to Studies of Heavy Metal Redistribution in Soil[J]. Advances in Environmental Research, 2003, 8(1):113-120.
[7] 琚宜太,王少怀,张清鹏,等. 福建三明地区被污染土壤的磁学性质及其环境意义[J]. 地球物理学报,2004,47(2):282-288. Ju Yitai, Wang Shaohuai, Zhang Qingpeng, et al. Mineral Magnetic Properties of Pollution Topsoils:A Case Study in Sanming City, Fujian Province, Southeast China[J]. Chinese Journal of Geophyics, 2004, 47(2):282-288.
[8] Rhoades J D, Manteghi N A, Shouse P J, et al. Estimating Soil Salinity from Saturated Soil-Paste Electrical Conductivity[J]. Soil Science Society of America Journal, 1989, 53:428-433.
[9] Kapicka A, Jordanova N, Petrovsky E, et al. Mag-netic Study of Weakly Contaminate Forest Soil[J]. Water, Air and Soil Pollution, 2003, 48 (2):31-44.
[10] 李永涛,曲赞.武汉东湖(官桥湖)沉积剖面的垂向磁性特征及其对环境污染的响应[J].地质科技情报,2011 36(4):779-788. Li Yongtao, Qu Zan. Vertical Magnetism Characteristic on Sediment Section at East Lake (Guanqiao Lake) of Wuhan,China and Its Response to Environment Pollution[J]. Geological Science and Technology Information, 2014, 36(4):779-788.
[11] 乔庆庆,黄宝春,张春霞.华北地区大气降尘和地表土壤磁学特征及污染来源[J]. 科学通报,2014,59(18):1748-1760. Qiao Qingqing, Huang Baochun, Zhang Chunxia. Magnetic Properties and Pollution Sources in Dusfall and Topsoil of North China[J]. Chinese Science Bulletin,2014, 59(18):1748-1760.
[12] 白兰,周仲华,张虎元,等. 污染土的电阻率特征分析[J]. 环境工程,2008,4(26):66-69. Bai Lan, Zhou Zhonghua, Zhang Huyuan, et al. Analysis the Resistivity Characteristics of Contaminated Soil[J]. Environmental Engineering, 2008, 4(26):66-69.
[13] 张胜业, 潘玉玲. 应用地球物理学原理[M]. 武汉:中国地质大学出版社,2004:268-296. Zhang Shengye, Pan Yuling. Application of the Principle of the Earth Physics[M]. Wuhan:China University of Geosciences Press, 2004:268-296.
[14] 李金铭. 地电场与电法勘探[M]. 北京:地质出版社,2005:136-139. Li Jinming. Electric Field and Electric Prospecting[M]. Beijing:Geological Publishing House, 2005:136-139.
[15] Pan Y X, Zhu R X, Banerjee S K. Rock-Magnetic Properties Related to Thermal-Treatment of Siderite:Behavior and Interpretation[J]. J Geophys Res, 2000, 105(B1):783-794.
[16] 朱日祥,邓成龙,潘永信. 泥河湾盆地磁性地层定年与早期人类演化[J]. 第四纪研究,2007,27 (6):922-944. Zhu Rixiang, Deng Chenglong, Pan Yongxin. Magneto Chronology of the Fluvio-Lacustrine Sequencesin the Nihewan Basin and Its Implications for Early Human Colonization of Northeast Asia[J]. Quaternary Sciences, 2007, 27 (6):922-944.
[17] 韩朋,翟云峰,栗粲圪,等. 末次间冰期以来洛川黄土天然剩磁记录的可靠性[J]. 吉林大学学报(地球科学版),2017,47(3):793-806. Han Peng, Zhai Yunfeng, Li Cangge, et al. The Reliability of the Natural Remanet Magnetization Recorded Since the Last Interglacial in Luochuan Loess[J]. Journal of Jilin University (Earth Science Edtion), 2017, 47(3):793-806.
[18] Lascu I, Banerjce S K, Berquo T S. Quantifying the Concentration of Ferrimagnetic in Sediments Using Rock Magnetic Methods[J]. Geochemistry Geophysics Geosystems, 2013, 11 (8):4881-4892.
[19] 吕玉甲,戴霜,张有贤,等. 兰州某钢厂周边土壤中磁化率积累速率研究[J].中国环境科学,2015,35(7):2112-2118. Lü Yujia, Dai Shuang, Zhang Youxian, et al. Magnetic Susceptibility Accumulation Rates in Soils Near a Steel Smelter in Lanzhou[J]. China Invironmental Science, 2015, 35(7):2112-2118.
[20] 杨涛. 武汉市东湖地区城市化过程环境磁学响应研究[D]. 武汉:中国地质大学,2008. Yang Tao. Magnetic Responses of Environment During the Urbanization Process in the East Lake Area, Wuhan City[D]. Wuhan:China University of Geosciences, 2008.
[21] 王凯,凌其聪. 武汉市城市土壤重金属粒径分布特征[J].环境化学,2013,32(12):2329-2335. Wang Kai, Ling Qicong. Particla-siz Distribution of Heavy Metals in Urban Soil of Wuhan, China[J]. Environmental Chemistry, 2013, 32(12):2329-2335.
[1] 代杰瑞, 喻超, 张明杰, 董建, 胡雪平. 淄博市区大气颗粒物重金属元素分布特征及其来源分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1201-1211.
[2] 徐军, 郝立波, 赵新运, 赵玉岩, 马成有, 魏俏巧, 吴超, 石厚礼. 松花江上游表层沉积物中重金属元素时空分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 854-862.
[3] 舒晴, 朱晓颖, 高维, 李瑞, 尹航. 三塘湖盆地航磁异常特征及油气远景预测[J]. 吉林大学学报(地球科学版), 2018, 48(2): 451-460.
[4] 陆继龙, 刘奇志, 王春珍, 蔡波, 郝立波, 尹业长, 赵玉岩. 二道松花江沉积物重金属特征及其潜在生态风险[J]. 吉林大学学报(地球科学版), 2018, 48(2): 566-573.
[5] 韩松, 刘国兴, 韩江涛. 华南地区进贤-柘荣剖面深部电性结构[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1837-1846.
[6] 周长松, 邹胜章, 李录娟, 朱丹尼, 卢海平, 夏日元. 岩溶区典型石灰土Cd形态指示意义及风险评价——以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562.
[7] 裴军令, 周在征, 李海兵, 孙知明. 中中新世以来阿尔金断裂走滑未造成柴达木盆地整体旋转[J]. 吉林大学学报(地球科学版), 2016, 46(1): 163-174.
[8] 赵建如, 初凤友, 金路, 杨克红, 葛倩. 珠江口西部海域表层沉积物重金属元素多尺度空间变化特征[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1772-1780.
[9] 王海峰,韩玉林,朱克超,易亮,邓希光,刘广虎,任江波. 东太平洋克拉里昂-克里帕顿断裂带WPC1101沉积柱样磁性地层及沉积环境[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1892-1905.
[10] 曹玲珑,王建华,黄楚光,倪志鑫,金钢雄,瓦西拉里,陈慧娴. 大亚湾表层沉积物重金属元素形态特征、控制因素及风险评价分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1988-1999.
[11] 陈圣波,李鑫龙,陈磊. 基于地面实测光谱的水系沉积物重金属含量反演[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1388-1394.
[12] 李鱼,王檬,张琛,高茜. 基于分式析因及最佳子集回归的多种污染物复合污染特征--阿特拉津与多种污染物在松花江沉积物上的吸附效应[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1595-1602.
[13] 王博,夏敦胜,贾佳,余晔,许淑婧. 中国西北地区典型钢铁工业城市表土重金属污染的环境磁学响应[J]. 吉林大学学报(地球科学版), 2013, 43(3): 962-973.
[14] 魏华玲,周国华,孙彬彬,刘占元,曾道明. 浙江省东部土壤元素地球化学特征及意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 564-572.
[15] 曾琴琴,王永华,吴文贤. 二维磁异常的粒子群快速成像方法及其应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 616-622.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!