吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 213-225.doi: 10.13278/j.cnki.jjuese.20160331

• 地质工程与环境工程 • 上一篇    下一篇

地下综合管廊边界条件对地震动力响应影响数值分析

施有志1,2, 柴建峰3, 林树枝4, 李秀芳1   

  1. 1. 厦门理工学院土木工程与建筑学院, 福建 厦门 361024;
    2. 上海交通大学船舶海洋与建筑工程学院, 上海 200240;
    3. 国网新源控股有限公司技术中心, 北京 100161;
    4. 厦门市建设局, 福建 厦门 361003
  • 收稿日期:2017-06-21 出版日期:2018-01-26 发布日期:2018-01-26
  • 作者简介:施有志(1976),男,副教授,博士,主要从事岩土与地下工程方面的研究,E-mail:2013110907@xmut.edu.cn
  • 基金资助:
    福建省自然科学基金项目(2016J01271);福建省住房和城乡建设厅科学技术项目(2015-K-38)

Numerical Analysis on Influence of Boundary Conditions on Seismic Dynamic Response of Underground Utility Tunnels

Shi Youzhi1,2, Chai Jianfeng3, Lin Shuzhi4, Li Xiufang1   

  1. 1. School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, Fujian, China;
    2. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
    3. Technology Center, State Grid Xinyuan Company Ltd, Beijing 100161;
    4. Xiamen Construction Bureau, Xiamen 361003, Fujian, China
  • Received:2017-06-21 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by Natural Science Foundation of Fujian Province (2016J01271) and Science and Technology Project of Housing and Urban-Rural Development and Department of Fujian Province (2015-K-38)

摘要: 为研究综合管廊动力边界条件对地震动力响应的影响,以厦门地区的代表性土层为例,建立动力有限元数值模型,土体本构采用小应变硬化模型,分别设定固定边界、黏性边界和自由场3种人工边界条件,进行Rayleigh波和地震底部剪切波作用下的场地响应研究;并根据变形特征及拟绝对加速度反应谱(PSA)评价3种边界的有效性,提出综合管廊地震动力分析的优化动力边界组合方法。研究表明:在地震波(底部水平加速度时程)及Rayleigh波的作用下,由于考虑了黏性边界对外行波的吸收,但未考虑地震动的输入问题及边界外半无限介质的弹性恢复性能,边界会对模型内部土体的水平位移产生限制作用,使得场地内水平位移响应偏小,而采用自由场边界则基本不存在这种限制作用,表现出强烈的振荡;采用激励侧固定边界、远离激励侧黏性边界、其余侧自由场边界的优化组合动力边界,在Rayleigh波和底部加速度时程共同作用下,二者引起的动力响应交叉干扰较少,可按线性叠加处理;同时,黏性边界对地震波引起的动力响应有一定范围的吸收,自由场边界对Rayleigh波引起的动力响应也有一定范围的变形限制影响。研究成果可供地下综合管廊结构地震响应精细化数值模拟及抗震设计参考。

关键词: 地下综合管廊, 地震, Rayleigh波, 动力边界, 数值分析

Abstract: To explore the influence of a utility tunnel's dynamic boundary conditions on its seismic dynamic response, the authors targeted at the typical soil layer in Xiamen, China, and analyzed the site response under the effects of Rayleigh waves and shear waves through building a dynamic finite element (FE) numerical model, adopting the hardening soil model with small strain stiffness (HSS) as the constitutive model of soil, and constructing the three artificial boundary conditions, namely fixed boundary, viscous boundary, and free field. After evaluating the effectiveness of the three boundary conditions in terms of deformation characteristics and pseudo-spectral acceleration (PSA), the authors proposed an optimized dynamic boundary combination conditions in the seismic dynamic analysis of utility tunnels. The research results showed that under the effects of seismic waves (bottom horizontal acceleration time history) and Rayleigh waves, a viscous boundary condition only touched upon the absorption of external traveling waves while leaving out of the problem of seismic input and the elastic resilience of semi-infinite media outside the boundary, thus imposed restrictions on the soil mass's horizontal displacement within the model, and which resulted in a smaller horizontal displacement; under a free-field boundary condition, not the foregoing restrictions but the strong oscillations occurred; under the optimized dynamic boundary combination conditions of the excitation-applied side adopted fixed boundary, the excitation-free side viscous boundary, and the rest sides free-field boundary, there was less dynamic response cross interference under the effects of Rayleigh waves and bottom acceleration time history, so that the signals could be treated by linear superposition. In the meantime, the viscous boundary could absorb the dynamic response induced by seismic waves to a certain extent, and the free-field boundary could limit the deformation of the dynamic response induced by Rayleigh waves to some degree. The research findings are expected to provide a reference for an elaborate numerical simulation of the seismic response of underground utility tunnels and their seismic design.

Key words: underground pipe gallery, earthquake, Rayleigh wave, dynamic boundary, numerical analysis

中图分类号: 

  • TU435
[1] 城市综合管廊工程技术规范: GB 50838-2015[S]. 北京: 中国建筑工业出版社, 2015. Technical Code for Urban Utility Tunnel Engineering: GB 50838-2015[S]. Beijing: China Architecture & Building Press, 2015.
[2] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250. Zhuang Haiyang, Cheng Shaoge, Chen Guoxing. Numerical Simulation and Analysis of Earthquake Damages of Dakai Metro Station Caused by Kobe Earthquake[J]. Rock & Soil Mechanics, 2008, 29(1): 245-250.
[3] Wolf J P, Song C. Some Cornerstones of Dynamic Soil-Structure Interaction[J]. Engineering Structures, 2002, 24(1): 13-28.
[4] 邱流潮, 金峰. 地震分析中人工边界处理与地震动输入方法研究[J]. 岩土力学, 2006, 27(9): 1501-1504. Qiu Liuchao, Jin Feng. Study on Method of Earthquake Input and Artificial Boundary Conditions for Seismic Soil-Structure Interaction Analysis[J]. Rock & Soil Mechanics, 2006, 27(9): 1501-1504.
[5] Hatzigeorgiou G D, Beskos D E. Soil-Structure In-teraction Effects on Seismic Inelastic Analysis of 3-D Tunnels[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(9): 851-861.
[6] Ghandil M, Behnamfar F. The Near-Field Method for Dynamic Analysis of Structures on Soft Soils Including Inelastic Soil-Structure Interaction[J]. Soil Dynamics and Earthquake Engineering, 2015,75: 1-17
[7] 张波, 李术才, 杨学英,等. 三维黏弹性介质人工边界研究[J]. 岩土力学, 2009, 30(11):3469-3475. Zhang Bo, Li Shucai, Yang Xueying, et al. Study of Three Dimensional Viscoelastic Medium Artificial Boundary[J]. Rock & Soil Mechanics, 2009, 30(11):3469-3475.
[8] 高峰, 关宝树. 沉管隧道三维地震反应分析[J]. 兰州交通大学学报, 2003, 22(1): 6-10. Gao Feng, Guan Baoshu. Three-Dimensional Seismic Response Analysis of Immersed Tunnel[J]. Journal of Lanzhou Jiaotong University, 2003, 22(1): 6-10.
[9] 孙海峰, 景立平, 孟宪春,等. ABAQUS中动力问题边界条件的选取[J]. 地震工程与工程振动, 2011, 31(3):71-76. Sun Haifeng, Jing Liping, Meng Xianchun, et al. The Selection of Boundary Conditions in Dynamic Problems by Using ABAQUS[J]. Journal of Earthquake Engineering & Engineering Vibration, 2011, 31(3): 71-76.
[10] 刘志强, 孙建国, 孙辉, 等. 曲线坐标系下的完全匹配层吸收边界条件[J/OL]. 吉林大学学报(地球科学版) (2017-03-23)[2017-09-28]. http://kns.cnki.net/kcms/detail/22.1343.p.20170323.1418.002.html. Liu Zhiqiang, Sun Jianguo, Sun Hui, et al. A Perfectly Matched Layer Absorbing Boundary Condition Under the Curvilinear Coordinate System[J/OL]. Journal of Jilin University (Earth Science Edition), (2017-03-23)[2017-09-28]. http://kns.cnki.net/kcms/detail/22.1343.p.20170323.1418.002.html.
[11] Jiao Y Y, Zhang X L, Zhao J, et al. Viscous Bou-ndary of DDA for Modeling Stress Wave Propagation in Jointed Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 1070-1076.
[12] Deeks A, Randolph M. Axisymmetric Time-Domain Transmitting Boundaries[J]. Journal of Engineering Mechanics, 1994, 120(1):25-42.
[13] 刘晶波, 吕彦东. 结构-地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报, 1998, 31(3):55-64. Liu Jingbo, Lü Yandong. A Direct Method for Analysis of Dynamic Soil-Structure Interaction[J]. China Civil Engineering Journal, 1998, 31(3):55-64.
[14] 刘晶波, 王振宇, 杜修力,等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6):46-51. Liu Jingbo, Wang Zhenyu, Du Xiuli, et al. Three-Dimensional Visco-Elastic Artificial Boundaries in Time Domain for Wave Motion Problems[J]. Engineering Mechanics, 2005, 22(6):46-51.
[15] 谷音, 刘晶波, 杜义欣. 三维一致粘弹性人工边界及等效粘弹性边界单元[J]. 工程力学, 2007, 24(12): 31-37. Gu Yin, Liu Jingbo, Du Yixin. 3D Consistent Viscous-Spring Artificial Boundary and Viscous-Spring Boundary Element[J]. Engineering Mechanics, 2007, 24(12): 31-37.
[16] 张燎军, 张慧星, 王大胜,等.黏弹性人工边界在ADINA中的应用[J]. 世界地震工程, 2008, 24(1): 12-16. Zhang Liaojun, Zhang Huixing, Wang Dasheng, et al. The Application of Artificial Viscous-Spring Boundary in ADINA[J]. World Earthquake Engineering, 2008, 24(1): 12-16.
[17] 蒋新新, 李建波, 林皋. 边坡场地条件下粘弹性人工边界模型的地震输入模式研究[J]. 世界地震工程, 2013, 29(4): 126-132. Jiang Xinxin, Li Jianbo, Lin Gao. Study on the Seismic Input Mode of Viscoelastic Artificial Boundary Under the Condition of Slope Site[J]. World Earthquake Engineering, 2013, 29(4): 126-132.
[18] 朱志辉, 余志武, 吴方伯,等. 考虑衰减波特性的透射边界及其实现[J]. 湖南大学学报(自然科学版), 2007, 34(12):1-5. Zhu Zhihui, Yu Zhiwu, Wu Fangbo, et al. Research on the Artificial Boundary in the Soil-Structure Dynamic Interaction[J]. Journal of Hunan University (Natural Sciences), 2007, 34(12):1-5.
[19] Liu J, Lu Y. A Direct Method for Analysis of Dynamic Soil-Structure Interaction Based on Interface Idea[J]. Developments in Geotechnical Engineering, 1998, 83(3): 261-276.
[20] 权登州, 王毅红, 井彦林, 等. 黄土区地铁车站动力分析中的无限元传输边界[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(4):537-542. Quan Dengzhou, Wang Yihong, Jing Yanlin, et al. Infinite-Element Transmitting Boundary in Dynamic Analysis of Subway Station in Loess Area[J].Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2015, 47(4):537-542.
[21] Seed H B, Martin P P, Lysmer J. The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction[R]. Oakland: University of California, 1975.
[22] 付晓东, 盛谦, 张勇慧. DDA方法中的人工边界问题研究[J]. 岩石力学与工程学报, 2015(5):986-993. Fu Xiaodong, Sheng Qian, Zhang Yonghui. Investigation on Artificial Boundary Problem in Discontinuous Deformation Analysis Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 986-993.
[23] 铁路工程抗震设计规范GB50111-2006[S]. 北京: 中国计划出版社, 2006. Code for Seismic Design of Railway Engineering: GB50111-2006[S]. Beijing: China Planning Press, 2006.
[24] 建筑抗震设计规范GB50011-2001[S]. 北京: 中国建筑工业出版社, 2001. Code for Seismic Design of Building GB50011-2010[S]. Beijing: China Architecture & Building Press,2001.
[25] Lamb H. On the Propagation of Tremors over the Surface of an Elastic Solid[J]. Philosophical Transactions of the Royal Society of London, 1904, 203,359:1-42.
[26] Shi Youzhi. Contribution of Rayleigh Damping Para-meters to Site Response Under Influence of Rayleigh Wave[J]. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 2016, 39(6): 48-59.
[1] 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267.
[2] 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889.
[3] 郑确, 刘财, 田有. 辽宁海城及其邻区地震b值空间分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 922-933.
[4] 刘四新, 朱怡诺, 王旭东, 宋二乔, 贺文博. 工程地震折射波解释方法研究进展[J]. 吉林大学学报(地球科学版), 2018, 48(2): 350-363.
[5] 徐泰然, 卢占武, 王海燕, 李洪强, 李文辉. 深地震反射剖面揭示的西藏娘热矿集区上地壳结构[J]. 吉林大学学报(地球科学版), 2018, 48(2): 556-565.
[6] 安振芳, 张进, 张建中. 海洋三维VC观测系统优化设计[J]. 吉林大学学报(地球科学版), 2018, 48(1): 271-284.
[7] 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893.
[8] 崔鑫, 李铂, 朱元清, 李亚军, 穆娟, 王峰. 基于Hyposat和HypoDD的山东地区地震波一维速度模型[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1572-1581.
[9] 刘海燕, 刘财, 王典, 刘洋. 基于Facet模型梯度算子一致性的地震数据不连续性识别方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1286-1294.
[10] 秦胜伍, 马中骏, 刘绪, 李广杰, 彭帅英, 陈骏骏, 翟健健. 基于简化Newmark模型的长白山天池火山诱发崩塌滑坡危险性评价[J]. 吉林大学学报(地球科学版), 2017, 47(3): 826-838.
[11] 姚振岸, 孙成禹. 含流体薄层时移地震AVA/AVF特征分析[J]. 吉林大学学报(地球科学版), 2017, 47(3): 884-898.
[12] 葛利华, 姜弢, 徐学纯, 贾海青, 杨志超. 辽西葫芦岛东部表层调查方法比对实验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 616-625.
[13] 吴建光, 张平, 吕昊, 曾晓献. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 255-264.
[14] 张兆辉, 刘化清, 苏明军. 基于地层切片的小尺度沉积相定量解释方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 893-899.
[15] 耿晓洁, 朱筱敏, 董艳蕾. 地震沉积学在近岸水下扇沉积体系分析中的应用以泌阳凹陷东南部古近系核三上亚段为例[J]. 吉林大学学报(地球科学版), 2016, 46(1): 57-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!