吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 491-500.doi: 10.13278/j.cnki.jjuese.20170125

• 移动平台探测技术及应用 • 上一篇    下一篇

利用GPR天线-目标极化的瞬时属性分析方法探测LNAPL污染土壤

王焱1, 鹿琪1,2, 刘财1, 佘松盛1, 刘四新1   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 油页岩地下原位转化与钻采技术国家地方联合工程实验室, 长春 130026
  • 收稿日期:2017-09-07 出版日期:2018-03-26 发布日期:2018-03-26
  • 通讯作者: 鹿琪(1972-),女,教授,主要从事探地雷达和地震信号处理方面的研究,E-mail:luqi@jlu.edu.cn E-mail:luqi@jlu.edu.cn
  • 作者简介:王焱(1993-),女,硕士研究生,主要从事探地雷达方面的研究,E-mail:wyan16@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41574109);国家重点研发计划项目(2016YFC0600505)

Using GPR Antenna-Target Polarization Instantaneous Attribute Analysis Method to Detect LNAPL Contaminated Soil

Wang Yan1, Lu Qi1,2, Liu Cai1, She Songsheng1, Liu Sixin1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. National-Local Joint Engineering Laboratory of In-Situ Conversion, Drilling and Exploitation Technology for Oil Shale, Changchun 130026, China
  • Received:2017-09-07 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41574109) and the National Key Research and Development Program of China (2016YFC0600505)

摘要: 轻非水相流体(LNAPL)泄漏后会对土壤和地下水造成严重污染,为了准确探测出LNAPL泄漏范围,本文将GPR天线-目标极化的瞬时属性分析方法应用于轻非水相流体污染土壤探测的研究中。采用注入柴油的石英砂砂箱在实验室建立污染土壤模型,利用探地雷达对该污染土壤分别进行天线方位为0°、90°的测量。LNAPL土壤污染物形状、大小、结构并不规则,因此可以通过0°和90°方位天线测量来分析天线-目标极化特征,了解目标物的走向、形状等地下介质信息。通过对预处理后的包含天线-目标极化特征的信息进行瞬时属性分析,LNAPL污染范围可以被清晰地识别,提高了GPR探测能力。

关键词: GPR, 土壤污染物, 轻非水相流体(LNAPL), 天线-目标极化, 瞬时属性分析

Abstract: In this paper, we apply the instantaneous attribute analysis method to ground penetrating radar (GPR) antenna-target polarization to detect the Light Non-Aqueous Phase Liquids (LNAPL) contaminated soil. We set up a model of LNAPL contaminated soils using quartz and diesel in laboratory and use the GPR to detect the contaminated soils with 0° antenna and 90° antenna, separately. The shape, size, and structure of LNAPL soil are not regular. Therefore, we can analyze the antenna-target polarization characteristics through 0° antenna measurement and 90° antenna measurement, and get the underground material information such as the direction and shape of the target. Through analyzing the instantaneous attribute of the pre-processed information including antenna-target polarization characteristics, the LNAPL contamination range can be clearly identified, and the detection ability of GPR can be improved.

Key words: ground penetrating radar, soil contaminants, light non-aqueous phase liquid, antenna-target polarization, instantaneous attribute analysis

中图分类号: 

  • P631.3
[1] 曾昭发,刘四新,王者江,等.探地雷达方法原理及应用[M].北京:科学出版社,2006. Zeng Zhaofa, Liu Sixin, Wang Zhejiang, et al. Method and Application of Ground-Penetrating Radar[M].Beijing:Science Press, 2006.
[2] Benson A K. Applications of Ground Penetrating Ra-dar in Assessing Some Geological Hazards:Examples of Groundwater Contamination, Faults, Cavities[J]. Journal of Applied Geophysics, 1995, 33(1/2/3):177-193.
[3] Atekwana E A, Sauck W A, Werkema D D. Investi-gations of Geoelectrical Signatures at a Hydrocarbon Contaminated Site[J]. Journal of Applied Geophysics, 2000, 44(2):167-180.
[4] Cassidy N J. Evaluating LNAPL Contamination Using GPR Signal Attenuation Analysis and Dielectric Property Measurements:Practical Implications for Hydrological Studies[J]. Journal of Contaminant Hydrology, 2007, 94(1):49-75.
[5] Daniels J J, Roberts R, Vendl M. Ground Penetrating Radar for the Detection of Liquid Contaminants[J]. Journal of Applied Geophysics, 1995, 33(1/2/3):195-207.
[6] Hwang Y K, Endres A L, Piggott S D, et al. Long-Term Ground Penetrating Radar Monitoring of a Small Volume DNAPL Release in a Natural Groundwater Flow Field[J]. Journal of Contaminant Hydrology, 2008, 97(1):1-12.
[7] Castro D L D. 4-D Ground Penetrating Radar Moni-toring of a Hydrocarbon Leakage Site in Fortaleza (Brazil) During Its Remediation Process:A Case History[J]. Journal of Applied Geophysics, 2003, 54(1):127-144.
[8] Bertolla L, Porsani J L, Soldovieri F, et al. GPR-4D Monitoring a Controlled LNAPL Spill in a Masonry Tank at USP, Brazil[J]. Journal of Applied Geophysics, 2014, 103:237-244.
[9] Bano M, Loeffler O, Girard J F. Ground Penetrating Radar Imaging and Time-Domain Modelling of the Infiltration of Diesel Fuel in a Sandbox Experiment[J]. Comptes Rendus Geoscience, 2009, 341(10):846-858.
[10] Sauck W A. A Model for the Resistivity Structure of LNAPL Plumes and Their Environs in Sandy Sediments[J]. Journal of Applied Geophysics, 2000, 44(2):151-165.
[11] 尤志鑫,冯晅,鹿琪. LNAPL污染物及水含量对石英砂介电常数的影响[J].世界地质,2015, 34(2):551-556. You Zhixin, Feng Xuan, Lu Qi. Influence of LNAPL Contamination and Water Content to Dielectric Constant of Quartz Sand[J]. Global Geology, 2015, 34(2):551-556.
[12] 李晔,鹿琪,刘财. LNAPLs迁移的数值模拟和土壤介电性质的变化分析[J].地球物理学进展,2014,29(2):936-943. Li Ye, Lu Qi, Liu Cai. Numerical Simulation of LNAPLs Migration and Analysis on Variation of Soil Dielectric Properties[J]. Progress in Geophysics, 2014, 29(2):936-943.
[13] 任磊.石油勘探开发中的石油类污染及其监测分析技术[J]. 中国环境监测,2004,20(3):44-47. Ren Lei. The pollution Status and Determination Methods of Petroleum Contaminations During the Processes of oil Exploration[J]. Environmental Monitoring in China, 2004, 20(3):44-47.
[14] 侯晓冬,郭秀军,贾永刚,等.基于探地雷达回波信号获取污染土壤中污染物含量的研究进展[J].地球物理学进展,2008,23(3):962-968. Hou Xiaodong, Guo Xiujun, Jia Yonggang, et al. Progress on Detection of Contamination Content in the Contaminated Soil Based on Ground Penetrating Radar[J]. Progress in Geophysics, 2008, 23(3):962-968.
[15] 王春辉.探地雷达方法测量近地表含水量及污染物探测研究[D].长春:吉林大学,2007. Wang Chunhui. Near Surface Water Content Measurement and Contamination Detection Using Ground-Penetrating Radar:A Simulation Study[D]. Changchun:Jilin University, 2007.
[16] 武晓峰,唐杰,藤间幸久.地下水中轻质有机污染物(LNAPL)透镜体研究[J].环境污染与防治,2000,22(3):17-20. Wu Xiaofeng, Tang Jie, Yukihisa Fujima Y. Study on Light Non-Aqueous Phase Liquid Lens in Subsurface Water[J]. Environmental Pollution & Control, 2000, 22(3):17-20.
[17] 郭秀军,武瑞锁,贾永刚,等.不同土壤中含油污水污染区的电性变化研究及污染区探测[J].地球物理学进展,2005,20(2):402-406. Guo Xiujun, Wu Ruisuo, Jia Yonggang, et al. The Study of Electrical Resistivity Change of Different Saturation Soils Contaminated with Oil Sewage and the Contaminated Area Detecting[J]. Progress in Geophysics, 2005, 20(2):402-406.
[18] 王宪楠,刘四新,程浩.Shearlet变换在GPR数据随机噪声压制中的应用[J].吉林大学学报(地球科学版),2017,47(6):1855-1864. Wang Xiannan, Liu Sixin, Cheng Hao. Application of Shearlet Transform for Suppressing Random Noise in GPR Data[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6):1855-1864.
[19] 张先武,高云泽,方广有. Hilbert谱分析在探地雷达薄层识别中的应用[J]. 地球物理学报,2013,56(8):2790-2798. Zhang Xianwu, Gao Yunze, Fang Guangyou. Application of Hilbert Spectrum Analysis in Ground Penetrating Radar Thin Layer Recognition[J]. Chinese Journal of Geophysics, 2013, 56(8):2790-2798.
[20] 冯德山,戴前伟,余凯. 基于经验模态分解的低信噪比探地雷达数据处理[J]. 中南大学学报(自然科学版),2012,43(2):596-604. Feng Deshan, Dai Qianwei, Yu Kai. GPR Signal Processing Under Low SNR Based on Empirical Mode Decomposition[J]. Journal of Central South University, 2012, 43(2):596-604.
[21] Tsoflias G, Van Gestel J P, Stoffa P, et al. Detection of Vertical Fractures in Geologic Formations Using the Polarization Properties of Ground-Penetrating Radar Signal[C]//69th Annual International Meeting. Houston:SEG, 1999:567-570.
[22] Seol S J, Kim J H, Song Y, et al. Finding the Strike Direction of Fractures Using GPR[J]. Geophysical Prospecting, 2001, 49(3):300-308.
[23] Radzevicius S J, Daniels J J. Ground Penetrating Radar Polarization and Scattering from Cylinders[J]. Journal of Applied Geophysics, 2000, 45(2):111-125.
[24] Lualdi M, Lombardi F. Orthogonal Polarization Approach for Three Dimensional Georadar Surveys[J]. NDT & E International, 2013, 60:87-99.
[25] Tsoflias G P, Van Gestel J P, Stoffa P L, et al. Vertical Fracture Detection by Exploiting the Polarization Properties of Ground-Penetrating Radar Signals[J]. Geophysics, 2004, 69(3):803-810.
[26] 李双喜,曾昭发,李静,等. 探地雷达极化探测时域有限差分法模拟效果分析[J]. 工程地球物理学报,2014, 11(4):513-521. Li Shuangxi, Zeng Zhaofa, Li Jing, et al. The Simulation of GPR Polarization Exploration Response with Finite-Difference Time-Domain Method[J]. Chinese Journal of Engineering Geophysics, 2014, 11(4):513-521.
[27] 陈冬. 地震多属性分析及其在储层预测中的应用研究[D].北京:中国地质大学,2008. Chen Dong. Research on Seismic Multi-Attributes Analysis and Its Application in Reservoir Predict[D]. Beijing:China University of Geosciences, 2008.
[28] 张军华,朱焕,高荣涛,等. 地震复合属性:地震属性提取与解释新方法[J].新疆石油地质,2007,28(4):494-496,503. Zhang Junhua, Zhu Huan, Gao Rongtao, et al. Compound Attribute as New Method for Pickup and Interpretation of Seismic Attributes[J]. Xinjiang Petroleum Geology, 2007, 28(4):494-496,503.
[29] 乐友喜,江凡,问雪,等. 用于地震反射界面识别的瞬时相位复合属性[J]. 物探化探计算技术,2012, 34(5):505-509. Yue Youxi, Jiang Fan, Wen Xue, et al. Composite Attribute Derived from Instantaneous Phase for the Recognition of Reflecting Interface[J]. Computing Techniques for Geophysical & Geochemical Exploration, 2012, 34(5):505-509.
[30] Tsoflias G P, Van Gestel J P, Stoffa P L, et al. Vertical Fracture Detection by Exploiting the Polarization Properties of Ground-Penetrating Radar Signals[J]. Geophysics, 2004, 69(3):803-810.
[1] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[2] 刘新彤, 刘四新, 孟旭, 傅磊. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 474-482.
[3] 殷长春, 卢永超, 刘云鹤, 张博, 齐彦福, 蔡晶. 多重网格准线性近似技术在三维航空电磁正演模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(1): 252-260.
[4] 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270.
[5] 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561.
[6] 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267.
[7] 刘永亮, 李桐林, 朱成, 关振伟, 苏晓波. 基于拟线性积分方程法的三维电磁场数值模拟精度分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1268-1277.
[8] 陈帅, 李桐林, 张镕哲. 考虑激发极化效应的瞬变电磁一维Occam反演[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1278-1285.
[9] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[10] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[11] 翁爱华, 刘佳音, 贾定宇, 杨悦, 李建平, 李亚彬, 赵祥阳. 有限长导线源频率测深有限内存拟牛顿一维反演[J]. 吉林大学学报(地球科学版), 2017, 47(2): 597-605.
[12] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[13] 罗天涯, 熊彬, 蔡红柱, 陈欣, 刘云龙, 兰怀慷, 李祖强, 梁卓. 复杂电性结构大地电磁二维响应特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 215-223.
[14] 李世文, 殷长春, 翁爱华. 时间域航空电磁电阻率和磁导率全时反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1830-1836.
[15] 韩松, 刘国兴, 韩江涛. 华南地区进贤-柘荣剖面深部电性结构[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1837-1846.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!