吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 846-853.doi: 10.13278/j.cnki.jjuese.20180043

• 地质工程与环境工程 • 上一篇    下一篇

有色示踪剂模拟槽实验图像分析法

赵勇胜1, 陈震1, 张佳文1, 肖乐乐2, 陈瑾1   

  1. 1. 吉林大学环境与资源学院, 长春 130021;
    2. 吉林大学通信工程学院, 长春 130022
  • 收稿日期:2018-02-02 出版日期:2018-05-26 发布日期:2018-05-26
  • 作者简介:赵勇胜(1961-),男,教授,博士生导师,主要从事污染场地控制与修复研究,E-mail:zhaoyongsheng@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41530636)

Image Processing Method of Dye Tracer Experiment in Sand Box

Zhao Yongsheng1, Chen Zhen1, Zhang Jiawen1, Xiao Lele2, Chen Jin1   

  1. 1. College of Environment and Resources, Jilin University, Changchun 130021, China;
    2. College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2018-02-02 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41530636)

摘要: 图像分析法是处理有色示踪剂模拟槽实验结果的常用方法之一。本文以食用亮蓝为示踪剂,从污染物的检测精度和污染羽描绘的准确度两个方面将图像分析法与传统取样法进行对比,并利用Matlab编程对模拟槽内的污染物贮存质量进行定量计算。结果表明,与传统取样法结果相比:图像分析法的检测精度可提高1个数量级;污染羽的描绘准确度至少可提高3%左右,在实验所设置的非均质条件下可提高17%左右。利用自行编制的Matlab程序对本实验模拟槽内贮存亮蓝质量进行计算可得,当剖分格数为3 7002(1 369万)时,亮蓝贮存质量的计算值最接近实测值,最小误差仅为0.5%。综合来讲,图像分析法是一种准确度高、空间分辨率高的信息采集和处理手段,可实现对非均质地层中有色示踪剂运移过程更为精细的描述。

关键词: 图像分析法, 检测精度, 污染羽准确度, 质量计算

Abstract: Image processing method is commonly used in analyzing the experimental data obtained from dye tracer experiments. The authors contrasted the image processing method with a conventional sampling method to monitor the precision and plume accuracy in using brilliant blue as the tracer. We quantitatively calculated the mass storage in the sand boxes by the Matlab programs. The results showed that the monitoring precision and the plume accuracy raised by one order of magnitude and about 3% respectively when we used the image processing method,and the plume accuracy raised by 17% under the heterogeneous conditions set by the experiment. The storage mass was almost the same as the one using the Matlab program. When the grid number was 13.69 million, the minimum error was 0.5%. Generally, the image processing method provides a high-accuracy and high-resolution way to acquire and dispose the picture to describe the migration process in the heterogeneous media more subtly.

Key words: image processing method, monitoring precision, plume accuracy, mass calculation

中图分类号: 

  • X523
[1] Konz M, Ackerer P, Huggenberger P, et al. Compa-rison of Light Transmission and Reflection Techniques to Determine Concentrations in Flow Tank Experiments[J]. Experiments in Fluids, 2009, 47(1):85-93.
[2] Jaeger S, Ehni M, Eberhardt C, et al. CCD Camera Image Analysis for Mapping Solute Concentrations in Saturated Porous Media[J]. Analytical and Bioanalytical Chemistry, 2009, 395(6):1867.
[3] Heidari P, Li L. Solute Transport in Low Teteroge-neity Sandboxes:The Role of Correlation Length and Permeability Variance[J]. Water Resources Research, 2014, 50(10):8240-8264.
[4] Kashuk S, Mercurio S R, Iskander M. Visualization of Dyed NAPL Concentration in Transparent Porous Media Using Color Space Components[J]. Journal of Contaminant Hydrology, 2014, 162:1-16.
[5] 康学远,施小清,史良胜,等.基于集合卡尔曼滤波的多相流模型参数估计:以室内二维砂箱中重质非水相污染物入渗为例[J].吉林大学学报(地球科学版),2017,47(3):848-859. Kang Xueyuan, Shi Xiaoqing, Shi Liangsheng, et al. Inverse Multiphase Flow Simulation Using Ensemble Kalman Filter:Application to a 2D Sandbox Experiment of DNAPL Migration[J]. Journal of Jilin University (Earth Science Edition),2017,47(3):848-859.
[6] 谈叶飞, 周志芳. 有色示踪剂在溶质运移实验中的数字图像识别和处理[J]. 水文地质工程地质, 2007, 34(1):99-101. Tan Yefei, Zhou Zhifang. The Digital Image Recognition and Processing of Colored Tracer in the Solute Transport Experiment[J]. Hydrogeology and Engineering Geology, 2007, 34(1):99-101.
[7] 宋小源,刘杰,郑春苗. 二维砂箱溶质示踪实验的图像分析法[J]. 环境科学学报, 2012, 32(10):2470-2475. Song Xiaoyuan, Liu Jie, Zheng Chunmiao.Image Analysis of Concentration Distribution in Two-Dimensional Sandbox Tracer Experiment[J]. Acta Scientiae Circumstantiae, 2012, 32(10):2470-2475.
[8] Yang M, Annable M D, Jawitz J W. Light Reflection Visualization to Determine Solute Diffusion into Clays[J]. Journal of Contamint and Hydrology, 2014, 161:1-9.
[9] Taylor T P, Pennell K D, Abriola L M, et al. Surfactant Enhanced Recovery of Tetrachloroethylene from a Porous Medium Containing Low Permeability Lenses:1:Experimental Studies[J]. Journal of Contaminant Hydrology, 2001, 48(3/4):325-350.
[10] Tatti F, Papini M P, Raboni M, et al. Image Analysis Procedure for Studying Back-Diffusion Phenomena from Low-Permeability Layers in Laboratory Tests[J]. Scientific Reports, 2016, 6:30400.
[11] Tatti F, Papini M P, Sappa G, et al. Contaminant Back-Diffusion from Low-Permeability Layers as Affected by Groundwater Velocity:A Laboratory Investigation by Box Model and Image Analysis[J]. Science of the Total Environment, 2018, 622:164-171.
[12] 王康. 多孔介质非均匀流动显色示踪技术与模拟方法[M].北京:科学出版社,2009. Wang Kang. Dye Tracer Technology and Modeling Method of Heterogeneous Flow in Porous Media[M].Beijing:Science Press,2009.
[13] 余立.CMYK与RGB色彩模式的数字化差别[J]. 电脑知识与技术, 2013(4):2704-2705. Yu Li. Digital Differential CMYK and RGB Color Model[J]. Computer Knowledge and Technology, 2013(4):2704-2705.
[14] Yang M, Annable M D, Jawitz J W. Back Diffusion from Thin Low Permeability Zones[J]. Environmental Science & Technology, 2014, 49(1):415-422.
[15] 章艳红, 叶淑君, 吴吉春. 光透法定量两相流中流体饱和度的模型及其应用[J]. 环境科学, 2014, 35(6):2120-2128. Zhang Yanhong, Ye Shujun, Wu Jichun.Models for Quantification of Fluid Saturation in Two-Phase Flow System by Light Transmission Method and Its Application[J]. Environmental Science, 2014, 35(6):2120-2128.
[1] 董军, 徐暖, 刘同喆, 管锐, 邓俊巍. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1): 234-240.
[2] 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829.
[3] 赵晓波,谢雪,李莹,马臻,李绪谦,樊凯. 不同Eh条件下弱透水层中硝酸盐截留能力[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1603-1607.
[4] 白静,赵勇胜,陈子方,孙勇军. 利用Tween80溶液冲洗修复萘污染地下水模拟实验[J]. 吉林大学学报(地球科学版), 2013, 43(2): 552-557.
[5] 刘淼, 陈睿阳, 李广柱, 郎贵林. 微压流化式复合生物反应器的同步脱氮[J]. J4, 2012, 42(3): 832-837.
[6] 康春莉, 何冲, 熊鹰, 刘汉飞, 石文娟, 薛洪海. 典型石油烃组分在地下水中的自然衰减规律[J]. J4, 2012, 42(1): 206-211.
[7] 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854.
[8] 辛欣, 卢文喜, 罗建男, 陈社明. DNAPLs污染含水层多相流数值模拟模型的替代模型[J]. J4, 2011, 41(3): 855-860.
[9] 夏雨波, 杨悦锁, 杜新强, 杨明星. 石油污染场地浅层地下水MNA原位修复潜能及微生物降解效益评估[J]. J4, 2011, 41(3): 831-839.
[10] 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846.
[11] 黄冠星, 孙继朝, 张英, 刘景涛, 张玉玺, 荆继红. 珠江三角洲污灌区地下水重金属含量及其相互关系[J]. J4, 2011, 41(1): 228-234.
[12] 赵勇胜, 李敬杰, 董军, 张诸林, 赵雪莲, 孙猛. 配位体对地下环境中Fe(Ⅱ)衰减硝基苯的强化作用[J]. J4, 2011, 41(1): 247-251.
[13] 邹东雷, 李萌, 邹昊辰, 凡冬艳, 孙明正. 新型铁碳微电解填料处理含苯污染地下水的实验[J]. J4, 2010, 40(6): 1441-1445.
[14] 赵全升, 冯娟, 安乐生. 德州市浅层地下水水质演化[J]. J4, 2010, 40(5): 1075-1082.
[15] 赵勇胜, 郑苇, 秦传玉, 王冰, 连子尧, 罗景阳. 强化空气扰动技术中表面活性剂的选择[J]. J4, 2010, 40(5): 1157-1162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!