吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 909-921.doi: 10.13278/j.cnki.jjuese.20170319
周进举, 王德利, 李博文, 李强, 王睿
Zhou Jinju, Wang Deli, Li Bowen, Li Qiang, Wang Rui
摘要: 由于弹性波逆时偏移更符合实际情况,而且转换波的成像结果有更高的分辨率,因此弹性波逆时偏移越来越受到重视。然而,弹性波逆时偏移需要多波多分量数据,为了减少成像结果中的串扰假象,在逆时偏移过程中进行P波和S波分解就变得非常必要。结合基于向量的激发振幅成像条件,我们把基于解耦传播的波场分解方法应用到弹性波逆时偏移中,并对比了其在各向同性介质和横向各向同性(VTI)介质中的应用效果。结果说明,该方法可以在各向同性介质中完全分解P波和S波,并保留波场的向量信息。虽然在VTI介质中有较小的分解残余,但是该分解残余不会在逆时偏移结果中产生明显的串扰;因此,这种波场分解方法可以应用于各向同性介质和VTI介质弹性波逆时偏移。该方法是在时间空间域实现的,可以在波场传播过程中直接对P波和S波进行分离,应用方便,计算效率高。与利用Helmholtz分解的弹性波逆时偏移相比,该方法避免了在PS波成像结果中的极性反转问题。在复杂Hess VTI模型的逆时偏移结果中,高速岩体和断层的成像清晰,甚至是两个低速薄夹层也能较好成像;这说明该方法对复杂介质具有较好的适应性。PS波成像结果中的各向异性体成像清晰,说明各向异性介质弹性波逆时偏移可以对传统逆时偏移不能很好成像的构造进行成像。
中图分类号:
[1] Yan J, Sava P. Isotropic Angle-Domain Elastic Reverse-Time Migration[J]. Geophysics, 2008, 73(6):S229-S239. [2] Yan R, Xie X B. An Angle-Domain Imaging Condition for Elastic Reverse Time Migration and Its Application to Angle Gather Extraction[J]. Geophysics, 2012, 77:S105-S115. [3] Du Q, Zhang M, Gong X, et al. Polarity-Consistent Excitation Amplitude Imaging Condition for Elastic Reverse Time Migration[J]. Journal of Geophysics & Engineering, 2015, 12(1):33-44. [4] Duan Y, Sava P. Scalar Imaging Condition for Elastic Reverse Time Migration[J]. Geophysics, 2015, 80(4):S127-S136. [5] Li Z, Ma X, Fu C, et al. Wavefield Separation and Polarity Reversal Correction in Elastic Reverse Time Migration[J]. Journal of Applied Geophysics, 2016, 127:56-67. [6] Wang W, McMechan G A, Tang C, et al. Up/Down and P/S Decompositions of Elastic Wavefields Using Complex Seismic Traces with Applications to Calculating Poynting Vectors and Angle-Domain Common-Image Gathers from Reverse Time Migrations[J]. Geophysics, 2016, 81(4):S181-S194. [7] Lu R, Yan J, Traynin P, et al. Elastic RTM:Anisotropic Wave-Mode Separation and Converted-Wave Polarization Correction[C]//Expanded Abstracts of the 80th Annual International Meeting. Denver:SEG, 2010:3171-3175. [8] Wang C, Cheng J, Arntsen B. Scalar and Vector Imaging Based on Wave Mode Decoupling for Elastic Reverse Time Migration in Isotropic and Transversely Isotropic Media[J]. Geophysics, 2016, 81(5):S383-S398. [9] Wang W, McMechan G A, Zhang Q. Comparison of Two Algorithms for Isotropic Elastic P and S Vector Decomposition[J]. Geophysics, 2015, 80(4):T147-T160. [10] Xiao X, Leaney W S. Local Vertical Seismic Profiling (VSP) Elastic Reverse-Time Migration and Migration Resolution:Salt-Flank Imaging with Transmitted P-to-S Waves[J]. Geophysics, 2010, 75(2):S35-S49. [11] Nguyen B D, McMechan G A. Excitation Amplitude Imaging Condition for Prestack Reverse-Time Migration[J]. Geophysics, 2013, 78(1):S37-S46. [12] Wang W, McMechan G A. Vector-Based Elastic Reverse Time Migration[J]. Geophysics, 2015, 80(6):S245-S258. [13] Zhou J, Wang D. Vector-Based Excitation Amplitude Imaging Condition for Elastic RTM[J]. Journal of Applied Geophysics, 2017, 147:1-9. [14] 马德堂,朱光明. 弹性波波场P波和S波分解的数值模拟[J]. 石油地球物理勘探,2003,38(5):482-486. Ma Detang, Zhu Guangming. Numerical Modeling of P-Wave and S-Wave Separation in Elastic Wavefield[J]. Oil Geophysical Prospecting, 2003, 38(5):482-486. [15] 张智,刘有山,徐涛,等.弹性波逆时偏移中的稳定激发振幅成像条件[J].地球物理学报,2013, 56(10):3523-3533. Zhang Zhi, Liu Youshan, Xu Tao, et al. A Stable Excitation Amplitude Imaging Condition for Reverse Time Migration in Elastic Wave Equation[J]. Chinese Journal of Geophysics, 2013, 56(10):3523-3533. [16] 李振春,雍鹏,黄建平,等. 基于矢量波场分离弹性波逆时偏移成像[J]. 中国石油大学学报(自然科学版), 2016, 40(1):42-48. Li Zhenchun, Yong Peng, Huang Jianping, et al. Elastic Wave Reverse Time Migration Based on Vector Wavefield Separation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(1):42-48. [17] 杨绍伟,何兵寿,杨佳佳. 弹性波逆时偏移子波拉伸校正[J]. 中国煤炭地质, 2016, 28(2):61-67. Yang Shaowei, He Bingshou, Yang Jiajia. Wavelet Stretch Correction in Elastic Wave Reverse Time Migration[J]. Coal Geology of China, 2016, 28(2):61-67. [18] 杨弘宇,刘继承,段玉波. 基于Poynting矢量的地震照明分析[J]. 吉林大学学报(地球科学版), 2017, 47(1):245-254. Yang Hongyu, Liu Jicheng, Duan Yubo. Seismic Illumination Analysis Based on the Poynting Vector[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):245-254. [19] Zhang J, Tian Z, Wang C. P-and S-Wave-Separated Elastic Wave-Equation Numerical Modeling Using 2D Staggered Grid[C]//Expanded Abstracts of the 77th Annual International Meeting. San Antonio:SEG, 2007:2104-2109. |
[1] | 叶云飞, 孙建国, 张益明, 熊凯. 基于立体层析反演的低频模型构建在深水区储层反演中的应用:以南海深水W构造为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1253-1259. |
[2] | 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267. |
[3] | 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243. |
[4] | 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252. |
[5] | 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889. |
[6] | 胡宁, 刘财. 分数阶时间导数计算方法在含黏滞流体黏弹双相VTI介质波场模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 900-908. |
[7] | 孙建国, 苗贺. 基于Chebyshev走时逼近的三维多次反射射线计算[J]. 吉林大学学报(地球科学版), 2018, 48(3): 890-899. |
[8] | 郑确, 刘财, 田有. 辽宁海城及其邻区地震b值空间分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 922-933. |
[9] | 刘四新, 朱怡诺, 王旭东, 宋二乔, 贺文博. 工程地震折射波解释方法研究进展[J]. 吉林大学学报(地球科学版), 2018, 48(2): 350-363. |
[10] | 单刚义, 韩立国, 张丽华. 基于模型约束的Kirchhoff积分法叠前深度成像[J]. 吉林大学学报(地球科学版), 2018, 48(2): 379-383. |
[11] | 孙建国, 李懿龙, 孙章庆, 苗贺. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版), 2018, 48(2): 343-349. |
[12] | 宁亚灵, 许家姝, 解滔, 张国苓, 卢军. 大柏舍深井地电阻率观测布极方式分析[J]. 吉林大学学报(地球科学版), 2018, 48(2): 525-533. |
[13] | 徐泰然, 卢占武, 王海燕, 李洪强, 李文辉. 深地震反射剖面揭示的西藏娘热矿集区上地壳结构[J]. 吉林大学学报(地球科学版), 2018, 48(2): 556-565. |
[14] | 王通, 王德利, 冯飞, 程浩, 魏敬轩, 田密. 三维稀疏反演多次波预测及曲波域匹配相减技术[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1865-1874. |
[15] | 卢燕红, 吴兆营, 丁广, 付琦, 张帆. 吉林前郭5.8级震区上地壳速度结构[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1894-1903. |
|