吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1231-1243.doi: 10.13278/j.cnki.jjuese.20170024

• 地球探测与信息技术 • 上一篇    下一篇

济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析

邓馨卉1, 刘财1, 郭智奇1, 刘喜武2,3,4, 刘宇巍2,3,4   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 页岩油气富集机理与有效开发国家重点实验室, 北京 100083;
    3. 中国石化页岩油气勘探开发重点实验室, 北京 100083;
    4. 中国石化石油勘探开发研究院, 北京 100083
  • 收稿日期:2017-11-21 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 郭智奇(1980-),男,教授,博士生导师,主要从事储层地球物理、岩石物理、各向异性地震波场正反演等方面的研究,E-mail:guozhiqi@jlu.edu.cn E-mail:guozhiqi@jlu.edu.cn
  • 作者简介:邓馨卉(1991-),女,博士研究生,主要从事岩石物理研究,E-mail:494745698@qq.com
  • 基金资助:
    国家自然科学基金重点项目(41430322);“十三五”国家重大专项(2017ZX05049-002);国家自然科学基金石油化工联合基金(U1663207)

Full Wave Field Seismic Response Simulation and Analysis of Anisotropic Shale Reservoir in Luojia Area of Jiyang Depression

Deng Xinhui1, Liu Cai1, Guo Zhiqi1, Liu Xiwu2,3,4, Liu Yuwei2,3,4   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China;
    3. SinoPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China;
    4. SinoPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2017-11-21 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41430322), National Key S & T Special Project of China (2017ZX05049-002) and the NSFC and SinoPEC Joint Key Project (U1663207)

摘要: 济阳坳陷罗家地区页岩储层的固有各向异性及水平层理发育使得储层呈现VTI(vertical transversely isotropy)各向异性,而VTI各向异性背景下垂直裂缝的发育使得储层进一步呈现等效正交各向异性特征。本文以正交各向异性介质作为罗家页岩油储层模型,在岩石物理建模中应用Backus平均理论将测井尺度的VTI各向异性粗化至地震尺度,并利用Schoenberg理论在VTI各向异性背景中引入垂直裂缝,进而得到正交各向异性等效介质模型,同时考虑裂缝尺度和流体填充等因素。之后,应用各向异性反射率法进行全波场地震正演模拟,计算正交各向异性页岩油储层AVAZ(amplitude versus azimuth)响应,通过振幅的方位特征进行储层裂缝识别。计算结果表明,PP波、PSV波和PSH波方位振幅响应各不相同,且方位振幅分布图的拟合形状可反映裂缝的发育方向,为页岩油储层中裂缝的地震识别提供依据。

关键词: 正交各向异性, 页岩储层, Backus平均理论, 垂直裂缝, 方位各向异性, 济阳坳陷

Abstract: The intrinsic anisotropy and horizontal bedding in the shale reservoir in Luojia area of Jiyang depression results in the reservoir VTI(vertical transverse isotropy)anisotropy; while the existence of the vertical fractures in the VTI anisotropic background makes the reservoir orthorhombic. We took the orthorhombic medium as the model of the Luojia shale reservoir, and applied Backus averaging method to the VTI anisotropic well data in modeling in order to upscale the well data to the seismic scale. Further, by using Schoenberg's theory we introduced the vertical fractures in the orthorhombic medium with considering the factors of the fracture scale and fluid filling simultaneously,and used the reflectivity method to the full wave field seismic forward modeling for calculating and analyzing the AVAZ (amplitude versus azimuth) response of the orthorhombic shale reservoir, so that we could characterize the reservoir fractures with the azimuthal features of amplitude. The result shows that the azimuth-amplitude response of PP, PSV and PSH waves are significantly different from each other, and the fitting shape of the azimuth-amplitude polar diagrams reflect the development direction of fractures. These provide the evidence for seismic recognition of fractures in the shale reservoir.

Key words: orthorhombic, shale reservoir, Backus averaging method, vertical fractures, azimuthal anisotropy, Jiyang depression

中图分类号: 

  • P631.4
[1] 慈兴华, 刘宗林, 王志战. 罗家地区泥质岩裂缝性储集层综合研究[J]. 录井工程, 2006, 17(1):71-74. Ci Xinghua, Liu Zonglin, Wang Zhizhan. Composite Study on Fractured Reservoir of Argillaceous Rock in Luojia Area[J]. Mud Logging Engineering, 2006, 17(1):71-74.
[2] 王永诗, 李政, 巩建强,等. 济阳坳陷页岩油气评价方法:以沾化凹陷罗家地区为例[J]. 石油学报, 2013, 34(1):83-91. Wang Yongshi, Li Zheng, Gong Jianqiang, et al. Discussion on an Evaluation Method of Shale Oil and Gas in Jiyang Depression:A Case Study on Luojia Area in Zhanhua Sag[J]. Acta Petrolei Sinica, 2013, 34(1):83-91.
[3] 王敏, 朱家俊, 余光华,等. 罗家地区泥页岩岩相特征及测井分析技术[J]. 测井技术, 2013, 37(4):426-431. Wang Min, Zhu Jiajun, Yu Guanghua, et al. The Shale Lithofacies Characteristics and Logging Analysis Techniques in Luojia Area[J]. Well Logging Technology, 2013, 37(4):426-431.
[4] 袁静. 沾化凹陷罗家地区沙四段顶部至沙三段泥质岩裂缝特征及其影响因素[J]. 中国石油大学学报(自然科学版), 2003, 27(4):20-23. Yuan Jing. Characteristics of Fractures in Argillaceous Rocks of Luojia Area in Zhanhua Sag[J]. Journal of the University of Petroleum, China, 2003, 27(4):20-23.
[5] 刘惠民, 张守鹏, 王朴,等. 沾化凹陷罗家地区沙三段下亚段页岩岩石学特征[J]. 油气地质与采收率, 2012, 19(6):11-15. Liu Huimin, Zhang Shoupeng, Wang Pu, et al. Lithologic Characteristics of Lower Es3 Shale in Luojia Area, Zhanhua Sag[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6):11-15.
[6] 李超, 朱筱敏, 朱世发,等. 沾化凹陷罗家地区沙三下段泥页岩储层特征[J]. 沉积学报, 2015, 33(4):795-808. Li Chao, Zhu Xiaomin, Zhu Shifa, et al. Shale Reservoir Characteristics of the Lower 3th Member of Shahejie Formation, Luojia Area, Zhanhua Sag[J]. Acta Sedimentologica Sinica, 2015, 33(4):795-808.
[7] 关丽. 偶极子声波测井在罗家地区沙三段泥页岩储层评价中的应用[J]. 测井技术, 2012, 36(5):495-498. Guan Li. Application of Dipole Acoustic Logging to Shale Reservoir Evaluation of Luojia Area[J]. Well Logging Technology, 2012, 36(5):495-498.
[8] 赵铭海, 傅爱兵, 关丽,等. 罗家地区页岩油气测井评价方法[J]. 油气地质与采收率, 2012, 19(6):20-24. Zhao Minghai, Fu Aibing, Guan Li, et al. Logging Evaluation Method of Shale Oil and Gas Reservoir in Luojia Area[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6):20-24.
[9] 尹克敏, 李勇, 慈兴华,等. 罗家地区沙三段泥质岩裂缝特征研究[J]. 断块油气田, 2002, 9(5):24-27. Yin Kemin, Li Yong, Ci Xinghua, et al. Study on Characters of Muddy Fractural Reservoirs in Luojia Area[J]. Fault-Block Oil& Gas Field, 2002, 9(5):24-27.
[10] 丁文龙, 许长春, 久凯,等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2):135-144. Ding Wenlong, Xu Changchun, Jiu Kai, et al. The Research Progress of Shale Fractures[J]. Advances in Earth Science, 2011, 26(2):135-144.
[11] Backus G E. Long-Wave Elastic Anisotropy by Horizontal Layering[J]. Journal of Geophysical Research, 1962, 67(11):4427-4440.
[12] Schoenberg M, Muir F. A Calculus for Finely Layered Anisotropic Media[J]. Geophysics, 1989, 54(54):581-589.
[13] Kumar D. Applying Backus Averaging for Deriving Seismic Anisotropy of a Long-Wavelength Equivalent Medium from Well-Log Data[J]. Journal of Geophysics and Engineering, 2013, 10:1-15.
[14] Zoeppritz K, Erdbebenwellen VⅢ B. On the Ref-lection and Propagation of Seismic Wave[J]. Gottinger Nachrichten, 1919, 1:66-84.
[15] Banik N C. An Effective Anisotropy Parameter in Transversely Isotropic Media[J]. Geophysics, 1987, 52(52):1654-1664.
[16] Thomsen L. WeakElastic Anisotropy[J]. Geophy-sics, 1986, 51(10):1954-1966.
[17] Rüger A. P-Wave Reflection Coefficients for Tran-sversely Isotropic Models with Vertical and Horizontal Axis of Symmetry[J]. Geophysics, 1997, 62(3):713-722.
[18] Sayers C M, Rickett J E. Azimuthal Variation in AVO Response for Fractured Gas Sands[J]. Geophysical Prospecting, 1997, 45(1):165-182.
[19] Schoenberg M A, Dean S,Sayers C M. Azimuth-Dependent Tuning of Seismic Waves Reflected from Fractured Reservoirs[J]. Geophysics, 1999, 64(4):1160-1171.
[20] Schoenberg M, Protazio J. "Zoeppritz" Rationalized, and Generalized to Anisotropic Media[J]. Journal of Seismic Exploration, 1992, 1(2):125-144.
[21] Fuchs K, Müller G. Computation of Synthetic Seis-mograms with the Reflectivity Method and Comparison with Observations[J]. Geophysical Journal International, 1971, 23(4):417-433.
[22] Sheriff R E. Seismic Wave Propagation in Stratified Media (B L N Kennett)[M]. Cambridge:Cambridge University Press, 1983.
[23] Booth D C,Crampin S. The Anisotropic Reflectivity Technique:Theory[J]. Geophysical Journal International, 1983, 72(3):755-766.
[24] Fryer G J, Frazer L N. Seismic Waves in Stratified Anisotropic Media:Ⅱ:Elastodynamic Eigensolutions for Some Anisotropic Systems[J]. Geophysical Journal International, 1987, 91(1):73-101.
[25] Mallick S, Frazer L N. Computation of Synthetic Seismograms for Stratified Azimuthally Anisotropic Media[J]. Journal of Geophysical Research, 1990, 95:(b6):8513-8526.
[26] Schoenberg M, Helbig K. Orthorhombic Media:Modeling Elastic Wave Behavior in a Vertically Fractured Earth[J]. Geophysics, 1997, 62(6):3475-3484.
[27] 李全厚, 裴警博. FMI成像测井解释方法及应用[J]. 哈尔滨商业大学学报(自然科学版), 2014, 30(6):715-719. Li Quanhou, Pei Jingbo. Interpretation Method and Application of FMI Imaging Logging[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2014, 30(6):715-719.
[28] Woodhouse J H. Surface Waves in a Laterally Va-rying Layered Structure[J]. Geophysical Journal International, 1974, 37(3):461-490.
[29] Gilbert F, Backus G E.Propagator Matrices in Elastic Wave and Vibration Problems[J]. Studia Geophysica et Geodaetica, 1966, 10(3):271.
[30] Fryer G J, Neil F L. Seismic Waves in Stratified Anisotropic Media[J]. Geophysical Journal of the Royal Astronomical Society, 1987, 78(3):691-710.
[31] Mallick S, Frazer L N. Rapid Computation of Multioffset Vertical Seismic Profile Synthetic Seismograms for Layered Media[J]. Geophysics, 1988, 53(4):479-491.
[32] Fei T W. Layer-Induced Seismic Anisotropy from Full-Wave Sonic Logs:Theory, Application, and Validation[J]. Geophysics, 2006, 71(6):D183-D190.
[33] Sondergeld C H, Rai C S. Elastic Anisotropy of Shales[J]. Leading Edge, 2011, 30(3):324-331.
[34] 张永华,陈萍,赵雨晴,等. 基于合成记录的综合层位标定技术[J]. 石油地球物理勘探, 2004, 39(1):92-96. Zhang Yonghua, Chen Ping, Zhao Yuqing, et al. Integrative Layer-Labeling Technique Based on Synthetic Seismogram[J]. Oil Geophysical Prospecting, 2004, 39(1):92-96.
[35] 吴萍, 杨长春, 王真理,等. HTI介质中的反射纵波方位属性[J]. 地球物理学进展, 2009, 24(3):944-950. Wu Ping, Yang Changchun, Wang Zhenli, et al. Reflection P-Wave Azimuthal Attribute in HTI Medium[J]. Progress in Geophysics, 2009, 24(3):944-950.
[36] 逄硕, 刘财, 郭智奇,等. 基于岩石物理模型的页岩孔隙结构反演及横波速度预测[J]. 吉林大学学报(地球科学版), 2017, 47(2):606-615. Pang Shuo, Cai Lai, Guo Zhiqi, et al. Estimation of Pore-Shape and Shear Wave Velocity Based on Rock-Physics Modelling in Shale[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2):606-615.
[1] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[2] 张鹏飞, 刘惠民, 曹忠祥, 田美荣, 唐东, 马士坤. 太古宇潜山风化壳储层发育主控因素分析—以鲁西-济阳地区为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1289-1298.
[3] 罗胜元, 何生, 金秋月, 杨睿之, 张君立. 渤南洼陷超压系统划分及结构特征[J]. 吉林大学学报(地球科学版), 2015, 45(1): 37-51.
[4] 王冠民. 济阳坳陷古近系页岩的纹层组合及成因分类[J]. J4, 2012, 42(3): 666-671.
[5] 袁波,陈世悦,袁文芳,朱建伟. 济阳坳陷沙河街组锶硫同位素特征[J]. J4, 2008, 38(4): 613-0617.
[6] 付 广,王国民,王有功. 贝尔凹陷布达特群垂直裂缝垂向封闭性演化特征[J]. J4, 2007, 37(5): 913-0918.
[7] 徐振中,陈世悦,姜佩仁. 济阳坳陷早中侏罗世沉积特征与沉积模式[J]. J4, 2005, 35(06): 738-0744.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!