吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1473-1482.doi: 10.13278/j.cnki.jjuese.20170167

• 地球探测与信息技术 • 上一篇    下一篇

互相关系数自约束的重力三维反演与高效求解

梁生贤   

  1. 中国地质调查局成都地质调查中心, 成都 610081
  • 收稿日期:2017-12-31 发布日期:2018-11-20
  • 作者简介:梁生贤(1984-),男,工程师,主要从事重、磁、电勘探与研究,E-mail:liangshengxian626@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFC060308);中国地质调查局项目(121201010000150007,121201010000150014)

A Self-Constrained 3D Inversion and Efficient Solution of Gravity Data Based on Cross-Correlation Coefficient

Liang Shengxian   

  1. Chengdu Center, China Geological Survey, Chengdu 610081, China
  • Received:2017-12-31 Published:2018-11-20
  • Supported by:
    Supported by National Key Research and Development Program of China(2016YFC060308) and Project of China Geological Survey(121201010000150007,121201010000150014)

摘要: 本文将拟合残差计算所得的互相关系数作为先验信息,与深度加权函数同时引入到重力正则化反演的模型约束中,以提升反演结果的可靠性。针对三维反演中的大型线性方程组问题,引入阻尼LSQR (最小二乘QR分解)算法,结合等效几何格架技术,将大矩阵按照模型单元划分为若干个子矩阵进行存储与运算。理论模型计算结果表明:同时利用互相关系数和深度加权的模型自约束反演,能较清晰地反映真实异常体;基于分块矩阵的阻尼LSQR算法求解线性方程组较直接法节省了几千甚至上万倍的存储量,且计算速率提高了数倍,可在普通计算机上实现较大规模的反演计算。将其应用于云南芦子园铁铅锌铜多金属矿床隐伏花岗岩体定位,取得了良好的效果。

关键词: 重力三维反演, 互相关系数, 自约束反演, 阻尼LSQR算法, 云南芦子园铁铅锌铜多金属矿床, 花岗岩体

Abstract: In this study, we applied both cross-correlation coefficient from fitting residual and depth weight to the constrained model of regularization gravity inversion to improve the reliability. In our approach, for the solutions in the system linear equations of gravity 3D inversion, damping LSQR algorithm method was introduced. Combined with the equivalent geometric trellis technology, the large matrix was divided into several sub-matrixes for storage and computation according to the model unit. The results of the theoretical model indicate that through the application of the cross-correlation coefficient with the depth weight into the constraint inversion model at the same time, the true anomaly can be clearly reflected. The damping LSQR algorithm method is sufficient for improving thousands or even tens of thousands of times of storage, and for increasing several times of computation rate. Thus, a large scale inversion calculation can be realized on a normal computer. The developed model is applied to the buried granite positioning in Luziyuan area, and the result is consistent with the true situation.

Key words: gravity 3D inversion, cross-correlation coefficient, self-constrained inversion, damping LSQR algorithm, Luziyuan area of Yunnan Province, granite

中图分类号: 

  • P631.1
[1] 侯遵泽,杨文采,刘家琦. 中国大陆地壳密度差异多尺度反演[J]. 地球物理学报,1998,41(5):642-651. Hou Zunze, Yang Wencai, Liu Jiaqi. Multiscale Inversion of the Density Contrast Within the Crust of China[J]. Chinese Journal Geophysics, 1998, 41(5):642-651.
[2] 姚长利,郝天珧,管志宁,等. 重磁遗传算法三维反演中高速计算及有效存储方法技术[J]. 地球物理学报2003,46(2):252-258. Yao Changli, Hao Tianyao, Guan Zhining, et al. High Speed Computation and Efficient Storage in 3D Gravity and Magnetic Inversion Based on Genetic Algorithms[J]. Chinese Journal Geophysics, 2003, 46(2):252-258.
[3] Li Y G, Oldenburg D W. 3-D Inversion of Magnetic Data[J]. Geophysics, 1996, 61(2):394-408.
[4] Li Y G, Oldenburg D W. 3-D Inversion of Gravity Data[J]. Geophysics, 1998, 63(1):109-119.
[5] Paoletti V, Ialongo S, Florio G, et al. Self-Constrain-ed Inversion of Potential Fields[J]. Geophysical Journal International, 2013, 195(2):854-869.
[6] Sun S D, Chen C. A Self-Constrained Inversion of Magnetic Data Based on Correlation Method[J]. Journal of Applied Geophysics, 2016, 135:8-16.
[7] Moorkamp M, Jegen M, Roberts A, et al. Massively Parallel Forward Modeling of Scalar and Tensor Gravimetry Data[J]. Computers & Geosciences, 2010, 36(5):680-686.
[8] 陈召曦,孟小红,郭良辉,等. 基于GPU并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报,2012,55(12):4069-4077. Chen Zhaoxi, Meng Xiaohong, Guo Lianghui, et al. Three-Dimensional Fast Forward Modeling and Inversion Strategy for Large Scale Gravity and Gravimetry Data Based on GPU[J]. Chinese Journal Geophysics, 2012,55(12):4069-4077.
[9] Portniaguine O, Zhdanov M S. 3-D Magnetic Inversion with Data Compression and Image Focusing[J]. Geophysics, 2002, 67(5):1532-1541.
[10] Li Y G, Oldenburg D W. Fast Inversion of Large-Scale Magnetic Data Using Wavelet Transforms and Alogarithmic Barrier Method[J]. Geophysical Journal International, 2003,152(2):251-265.
[11] 刘天佑. 位场勘探数据处理新方法[M]. 北京:科学出版社,2007:47-49. Liu Tianyou. New Data Processing Methods for Potential Field Exploration[M]. Beijing:Science Press, 2007:47-49.
[12] Davis K, Li Y G. Fast Solution of Geophysical Inversion Using Adaptive Mesh, Space-Filling Curves and Wavelet Compression[J]. Geophysical Journal International, 2011, 185(1):157-166.
[13] Davis K, Li Y G. Efficient 3D Inversion of Magnetic Data via Octree-Mesh Discretization, Space-Filling Curves, and Wavelets[J]. Geophysics, 2013,78(5):J61-J73.
[14] 姚长利,郑元满,张聿文. 重磁异常三维物性反演随机子域方法技术[J]. 地球物理学报2007,50(5):1576-1583. Yao Changli, Zheng Yuanman, Zhang Yuwen. 3-D Gravity and Magnetic Inversion for Physical Properties Using Stochastic Subspaces[J]. Chinese Journal Geophysics, 2007, 50(5):1576-1583.
[15] Pilkington M. 3-D Magnetic Imaging Using Conjugate Gradients[J]. Geophysics, 1997, 62(4):1132-1142.
[16] Paige C C, Saunders M A. LSQR:An Algorithm for Aparse Linear Equations and Sparse Least Squares[J]. Acm Transactions on Mathematical Software, 1982, 8(1):43-71.
[17] Abedi M, Gholami A, Norouzi G H, et al. Fast Inversion of Magnetic Data Using Lanczos Bidiagonalization Method[J]. Journal of Applied Geophysics, 2013, 90:126-137.
[18] Meng Z H, Li F T, Zhang D L, et al. Fast 3D Inversion of Airborne Gravity-Gradiometry Data Using Lanczos Bidiagonalization Method[J]. Journal of Applied Geophysics, 2016, 132:211-228.
[19] Rezaie M, Moradzadeh A, Kalateh A N. Fast 3D Inversion of Gravity Data Using Solution Space Priorconditioned Lanczos Bidiagonalization[J]. Journal of Applied Geophysics, 2017, 136:42-50.
[20] Siripunvaraporn W, Egbert G. An Efficient Data-Subspace Inversion Method for 2-D Magnetotelluric Data[J]. Geophysics, 2000, 65(3):791-803.
[21] Patella D. Introduction to Ground Surface Self-Potential Tomography[J]. Geophysical Prospecting, 1997, 45(4):653-681.
[22] Mauriello P, Patella D. Localization of Maximum-Depth Gravity Anomaly Sources by a Distribution of Equivalent Point masses[J]. Geophysics, 2001, 66(5):1431-1437.
[23] 郭良辉,孟小红,石磊,等. 重力和重力梯度数据三维相关成像[J]. 地球物理学报,2009,52(4):1098-1106. Guo Lianghui, Meng Xiaohong, Shi Lei, et al. 3-D Correlation Imaging for Gravity Gradiometry Data[J]. Chinese Journal Geophysics, 2009, 52(4):1098-1106.
[24] 孟小红,刘国峰,陈召曦,等. 基于剩余异常成像的相关重磁物性反演方法[J]. 地球物理学报,2012,55(1):304-309. Meng Xiaohong, Liu Guofeng, Chen Zhaoxi, et al. 3-D Gravity and Magnetic Inversion for Physical Properties Based on Residual Anomaly Correlation[J]. Chinese Journal Geophysics, 2012, 55(1):304-309.
[25] 阮帅,王绪本,高永才,等.位场正则化下延在自然电位概率成像中的应用[J]. 物化探计算技术,2006,28(4):332-336. Ruan Shuai, Wang Xuben, Gao Yongcai, et al. Application of Potential Field Normalized Downward Extrapolation in SP Potential Tomography[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2006, 28(4):332-336.
[26] 王绪本,高永才. 基于正则化向下延拓的重磁概率成像方法研究[C]//《地球物理学报》编辑部.重磁数据处理解释应用研讨会论文集. 杭州:浙江大学出版社,2008:49-54. Wang Xuben, Gao Yongcai. Probability Tomography of Gravity and Magnetic Anomalies Based on Regularized Downward Continuation[C]//"Chinese Journal Geophysics" Editorial Department. Collection of Papers on the Workshop on Gravity and Magnetic Interpretation and Applications. Hangzhou:Zhejiang University Press, 2008:49-54.
[27] 吴小平,徐果明. 大地电磁数据的Occam反演改进[J].地球物理学报1998,41(4):547-553. Wu Xiaoping, Xu Guoming. Improvement of Occam's Inversion for MT Data[J]. Chinese Journal Geophysics,1998,41(4):547-553.
[28] 杨文采,杜剑渊. 层析成像新算法及其在工程检测上的应用[J]. 地球物理学报,1994,37(2):239-244. Yang Wencai, Du Jianyuan. A New Algorithm of Seismic Tomography with Application to Engineering Detsctions[J]. Chinese Journal Geophysics, 1994,37(2):239-244.
[29] 蒋成兴,卢映祥,陈永清,等. 滇西南芦子园超大型铅锌多金属矿床成矿模式与综合找矿模型[J]. 地质通报,2013,32(11):1832-1844. Jiang Chengxing, Lu Yingxiang, Chen Yongqing, et al. Metallogenic Model and Integrated Prospecting Pattern of the Luziyuan Pb-Zn Polymetallic Deposit, Southwestern Yunnan Province[J]. Geological Bulletin of China, 2013, 32(11):1832-1844.
[30] Liang S X, Jiao Y J, Guo J. Prediction of Hidden Granites in the Luziyuan Area of Yunnan Province and Prospecting Direction[J]. Acta Geologica Sinica (English Edition), 2015, 89(5):1781-1782.
[31] 吾守艾力·肉孜,梁生贤,邹光富,等. AMT与重力方法在云南芦子园地区隐伏岩体勘查中的应用[J]. 物探与化探,2015,39(3):525-529. Wushouaili Rouzi, Liang Shengxian, Zou Guangfu, et al. The Application of AMT and 3D Gravity Methods to the Prospecting for Concealed Rock Body in the Luziyuan Area[J]. Geophysical and Geochemical Exploration, 2015, 39(3):525-529.
[32] 董文伟,陈少玲. 镇康芦子园铅锌矿床特征及成因[J].云南地质,2007, 26(4):404-410. Dong Wenwei, Chen Shaoling. The Characteristics & Genesis of Luziyuan Pb-Zn Deposit, Zhenkang[J]. Yunnan Geology, 2007,26(4):404-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!