吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1012-1028.doi: 10.13278/j.cnki.jjuese.20180339

• 地质与资源 • 上一篇    

胶东牟乳成矿带范家庄金矿床成矿流体特征及其地质意义

王勇军1,2,3, 刘颜4, 黄鑫1,2, 徐昌1,2, 沈立军1,2, 张业智1,2, 张兆民1,2   

  1. 1. 山东省煤田地质规划勘察研究院, 济南 250100;
    2. 中国地球物理学会煤田地球物理重点实验室, 济南 250100;
    3. 山东省煤田地质局第一勘探队, 山东 枣庄 277000;
    4. 中国地质大学(武汉)资源学院, 武汉 430074
  • 收稿日期:2018-12-21 发布日期:2020-07-29
  • 通讯作者: 刘颜(1992-),男,博士研究生,主要从事矿床地球化学、成矿规律与成矿预测方面的研究,E-mail:liuyan6850@126.com E-mail:liuyan6850@126.com
  • 作者简介:王勇军(1981-),男,高级工程师,主要从事地质调查与矿产勘查方面的研究,E-mail:53557878@qq.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0600105);山东省煤田地质局科研专项基金项目(鲁煤地科字(2017)2号)

Characteristics of Ore-Forming Fluids and Geological Significance of Fanjiazhuang Gold Deposit in Muping-Rushan Metallogenic Belt, Jiaodong Peninsula

Wang Yongjun1,2,3, Liu Yan4, Huang Xin1,2, Xu Chang1,2, Shen Lijun1,2, Zhang Yezhi1,2, Zhang Zhaomin1,2   

  1. 1. Shandong Provincial Research Institute of Coal Geology Planning and Exploration, Jinan 250100, China;
    2. Key Laboratory of Coalfield Geophysics, Geophysical Society of China, Jinan 250100, China;
    3. The First Prospecting Team of Shandong Coal Geology Bureau, Zaozhuang 277000, Shandong, China;
    4. School of Earth Resources, China University of Geosciences(Wuhan), Wuhan 430074, China
  • Received:2018-12-21 Published:2020-07-29
  • Supported by:
    Supported by National Key R & D Program of China (2016YFC0600105) and Research Fund Project of Shandong Coalfield Geology Bureau (Lumeidi Kezi (2017) No. 2)

摘要: 牟乳成矿带是胶东半岛金矿集区三大金成矿带之一,但带内金矿床的成矿流体来源仍存在着较大分歧。范家庄金矿床是近年在该成矿带内新发现的金矿床,其成矿流体的研究较为薄弱。鉴于此,本文从流体包裹体和H-O同位素研究入手,结合矿床地质特征,对范家庄金矿床的成矿流体和矿床成因进行探讨。金矿体主要产于侏罗纪弱片麻状黑云母二长花岗岩内,呈脉状、透镜状,受断裂构造控制明显。该矿床热液成矿期可分为3个成矿阶段:石英-粗粒黄铁矿阶段(成矿早阶段)、石英-金-多金属硫化物阶段(主成矿阶段)、石英-碳酸盐阶段(成矿晚阶段)。流体包裹体岩相学特征显示,矿床中的原生包裹体以气液两相包裹体和纯液相水溶液包裹体为主,另有少量含CO2三相包裹体。显微测温结果显示,成矿早阶段和主成矿阶段的均一温度分别为167.2~297.5℃和168.4~253.6℃,盐度(w(NaCl))分别为3.55%~22.65%和2.58%~12.05%,密度分别为0.77~1.06 g/cm3和0.84~1.02 g/cm3,具有中低温、中低盐度、低密度的特征,与中温热液成矿系统流体特征相一致。对成矿压力和深度的估算表明,主成矿阶段的成矿压力为45.8~68.7 MPa (平均为52.8 MPa),成矿深度为5.38~6.71 km (平均为5.93 km),显示出中浅成成矿的特点。成矿流体H-O同位素示踪显示,成矿早阶段流体的δDH2O-SMOW值介于-96.9‰~-89.0‰之间,δ18OH2O-SMOW值介于-4.3‰~4.5‰之间;主成矿阶段的δDH2O-SMOW值介于-90.7‰~-85.3‰之间,δ18OH2O-SMOW值介于-5.4‰~-0.2‰之间。由此认为,范家庄金矿床的成矿流体来源于岩浆水与大气降水的混合,且随着成矿流体的演化,大气降水的混入比例增加。综合矿床地质特征和成矿流体研究,认为范家庄金矿床应属中温热液脉型金矿床。

关键词: 流体包裹体, H-O同位素, 中温热液脉型金矿, 范家庄金矿床, 牟乳成矿带

Abstract: The Muping-Rushan metallogenic belt is one of the three major gold metallogenic belts in the world-class Jiaodong gold province. However, its sources of ore-forming fluids is still hotly debated. The Fanjiazhuang deposit is a newly discovered gold deposit in this belt, and the study of its ore-forming fluid is relatively weak. Combined with the geological characteristics of the deposit, the fluid inclusions,hydrogen, and oxygen isotopic geochemistry were analyzed to understand the characteristics, origin, and evolution of the ore-forming fluids. The gold orebodies are mainly existed in Jurassic granites, in vein and lens shape, and are controlled obviously by fault structures. The hydrothermal mineralization of Fanjiazhuang deposit can be divided into 3 stages: Quartz-coarse pyrite (early metallogenic stage), quartz-Au polymetallic sulfide (major metallogenic stage), and quartz-carbonate (late metallogenic stage). The petrographic observation indicates that there are mainly two-phase aqueous and mono-phase liquid aqueous inclusions, with a few three-phase CO2-bearing inclusions. The micro-thermometry shows that the homogeneous temperature of the fluid inclusions in the early and major metallogenic stages is 167.2-297.5 ℃ and 168.4-253.6 ℃, salinity is 3.55%-22.65% and 2.58%-12.05%, and density is 0.77-1.06 g/cm3 and 0.84-1.02 g/cm3, respectively. All these features indicate the characteristics of middle-low temperature, middle-low salinity, and low density, a typical mesothermal gold deposit. The ore-forming pressure in the major metallogenic stage is estimated to be 45.8-68.7 MPa (average 52.8 MPa), and the corresponding ore-forming depth is 5.38-6.71 km (average 5.93 km), medium-shallow mineralization. The hydrogen and oxygen isotopic compositions of the ore-forming fluids show the δDH2O-SMOW value from -96.9‰ to -89.0‰ and the δ18OH2O-SMOW value from -4.3‰ to 4.5‰ in the early stage. The δDH2O-SMOW and δ18OH2O-SMOW values in the major metallogenic stage change from -90.7‰ to -85.3‰ and from -5.4‰ to -0.2‰, respectively. All these above suggest that the ore-forming fluid of Fanjiazhuang gold deposit was derived from the mixture of magmatic water and meteoric water, and the proportion of the latter increased with the evolution of the ore-forming fluid. Based on the geological and fluid inclusion features, Fanjiazhuang deposit should be a mesothermal gold deposit.

Key words: fluid inclusions, hydrogen and oxygen isotopes, mesothermal gold deposit, Fanjiazhuang gold deposit, Muping-Rushan metallogenic belt

中图分类号: 

  • P618.51
[1] Song M C, Li S Z, Santosh M, et al. Types, Characteristics and Metallogenesis of Gold Deposits in the Jiaodong Peninsula, Eastern North China Craton[J]. Ore Geology Reviews, 2015, 65:612-625.
[2] Li X H, Fan H R, Yang K F, et al. Pyrite Textures and Compositions from the Zhuangzi Au Deposit, Southeastern North China Craton:Implication for Ore-Forming Processes[J]. Contributions to Mineralogy and Petrology, 2018, 173(9):73.
[3] Mao J W, Wang Y T, Li H M, et al. The Relationship of Mantle-Derived Fluids to Gold Metallogenesis in the Jiaodong Peninsula:Evidence from D-O-C-S Isotope Systematics[J]. Ore Geology Reviews, 2008, 33(3):361-381.
[4] Xue J L, Li S R, Sun W Y, et al. Characteristics of the Genetic Mineralogy of Pyrite and Its Significance for Prospecting in the Denggezhuang Gold Deposit, Jiaodong Peninsula, China[J]. Science China Earth Sciences, 2014, 57(4):644-661.
[5] Zeng Q D, Liu J M, Liu H T, et al. The Ore-Forming Fluid of the Gold Deposits of Muru Gold Belt in Eastern Shandong, China:A Case Study of Denggezhuang Gold Deposit[J]. Resource Geology, 2006, 56(4):375-384.
[6] Hu F F, Fan H R, Zhai M G, et al. Fluid Evolution in the Rushan Lode Gold Deposit of Jiaodong Peninsula, Eastern China[J]. Journal of Geochemical Exploration, 2006, 89(1):161-164.
[7] Li L, Santosh M, Li S R. The ‘Jiaodong Type’ Gold Deposits:Characteristics, Origin and Prospecting[J]. Ore Geology Reviews, 2015, 65:589-611.
[8] 沈保丰. 华北陆台太古宙绿岩带地质及成矿[M]. 北京:地质出版社, 1994. Sheng Baofeng. Geology and Mineralization of the Archean Greenstone Belt in the North China Platform[M]. Beijing:Geological Publishing House, 1994.
[9] 范宏瑞,胡芳芳,杨进辉,等. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 2005, 21(5):1317-1328. Fan Hongrui, Hu Fangfang, Yang Jinhui, et al. Fluid Evolution and Large-Scale Gold Metallogeny During Mesozoic Tectonic Transition in the Eastern Shandong Province[J]. Acta Petrologica Sinica, 2005, 21(5):1317-1328.
[10] 杨忠芳,徐景奎,赵伦山,等. 胶东两大成因系列金矿石英包裹体氢氧同位素及成矿流体组分地球化学研究[J]. 矿物学报, 1991, 11(4):363-369. Yang Zhongfang, Xu Jingkui, Zhao Lunshan, et al. Geochemical Studies of Hydrogen and Oxygen Isotopes and Ore-Forming Fluid Compositions of Fluid Inclusions in Quartz from Two Types of Gold Deposits in Jiaodong[J]. Acta Mineralogica Sinica, 1991, 11(4):363-369.
[11] 张连昌,沈远超,刘铁兵,等. 山东蓬家夼金矿硫铅碳氧同位素地球化学[J]. 矿物学报, 2002, 22(3):255-260. Zhang Lianchang, Shen Yuanchao, Liu Tiebing, et al. Sulfur, Lead, Carbon, and Oxygen Isotope Geochemistry of Pengjiakuang Gold Deposit in Shandong Province[J]. Acta Mineralogica Sinica, 2002, 22(3):255-260.
[12] 张理刚,陈振胜,刘敬秀,等. 焦家式金矿水-岩交换作用:成矿流体氢氧同位素组成研究[J]. 矿床地质, 1994, 13(3):193-200. Zhang Ligang, Chen Zhensheng, Liu Jingxiu, et al. Water-Rock Exchange in the Jiaojia Type Gold Deposit:A Study of Hydrogen and Oxygen Isotopic Composition of Ore-Forming Fluids[J]. Mineral Deposits, 1994, 13(3):193-200.
[13] 翟建平,胡凯,陆建军. 乳山金矿床的成因机制:成矿流体和H,O,Sr同位素证据[J]. 科学通报, 1996, 41(12):1119-1121. Zhai Jianping, Hu Kai, Lu Jianjun. Genetic Mechanism of Rushan Gold Deposit:Evidence of Ore-Forming Fluid and H, O, Sr Isotope[J]. Chinese Science Bulletin, 1996, 41(12):1119-1121.
[14] 薛建玲,李胜荣,孙文燕,等. 胶东邓格庄金矿床流体包裹体氦、氩同位素组成及其成矿物质来源示踪[J]. 吉林大学学报(地球科学版), 2013, 43(2):400-414. Xu Jianling, Li Shengrong, Sun Wenyan, et al. Helium and Argon Isotopic Composition in Fluid Inclusions and the Source of Ore-Forming Materials of Denggezhuang Gold Deposit in Jiaodong Peninsula[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(2):400-414.
[15] 毛景文,李厚民,王义天,等. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J]. 地质学报, 2005, 79(6):839-857. Mao Jingwen, Li Houmin, Wang Yitian, et al. The Relationship Between Mantle-Derived Fluid and Gold Ore-Formation in the Eastern Shandong Peninsula:Evidences from D-O-C-S Isotopes[J]. Acta Geologica Sinica, 2005, 79(6):839-857.
[16] 赵玉灵,杨金中,沈远超. 胶东蓬家夼金矿床稳定同位素地球化学特征研究[J]. 矿物岩石, 2000, 20(4):19-24. Zhao Yuling, Yang Jinzhong, Shen Yuanchao. The Geological and Geochemical Characteristics of Pengjiakuang Gold Deposit, Shandong Province[J]. Journal of Mineralogy and Petrology, 2000, 20(4):19-24.
[17] 周起凤. 胶东乳山英格庄金矿成因矿物学与深部远景研究[D]. 北京:中国地质大学(北京), 2010. Zhou Qifeng. Study on Genetic Mineralogy and Deep Prospects of Yinggezhuang Gold Deposit in Rushan, Jiaodong[D]. Beijing:China University of Geosciences (Beijing), 2010.
[18] 侯献华,罗天明,王铁军,等. 胶东英格庄金矿床地质地球化学特征[J]. 地质与勘探, 2010, 46(5):910-920. Hou Xianhua, Luo Tianming, Wang Tiejun, et al. Characteristics of Geology and Geochemistry of the Yinggezhuang Gold Deposit in Eastern Shandong Province[J]. Geology and Exploration, 2010, 46(5):910-920.
[19] 高太忠,赵伦山,杨敏之. 山东牟乳金矿带成矿演化机理探讨[J]. 大地构造与成矿学, 2001, 25(2):155-160. Gao Taizhong, Zhao Lunshan, Yang Minzhi. Gold Mineralization and Its Evolution in the Mouping-Rushan Gold Ore Belt, Shandong Province, China[J]. Geotectonica et Metallogenia, 2001, 25(2):155-160.
[20] 杨金中,沈远超,刘铁兵,等. 山东蓬家夼金矿床成矿流体地球化学特征[J]. 矿床地质, 2000, 19(3):235-244. Yang Jinzhong, Shen Yuanchao, Liu Tiebing, et al. Geochemical Characteristics of Ore-Forming Fluids in the Pengjiakuang Gold Deposit, Shandong Province[J]. Mineral Deposits, 2000, 19(3):235-244.
[21] 沈立军,王勇军,黄鑫,等. 山东范家庄金矿床地质特征及找矿潜力分析[J]. 中国矿业, 2017, 26(增刊2):265-269. Shen Lijun, Wang Yongjun, Huang Xin, et al. Discussion on the Geological Characteristics and Prospecting Potential in Fanjiazhuang Gold Deposit, Shandong Province[J]. China Mining Magazine, 2017, 26(Sup.2):265-269.
[22] Tan J, Wei J H, Audétat A, et al. Source of Metals in the Guocheng Gold Deposit, Jiaodong Peninsula, North China Craton:Link to Early Cretaceous Mafic Magmatism Originating from Paleoproterozoic Metasomatized Lithospheric Mantle[J]. Ore Geology Reviews, 2012, 48:70-87.
[23] Tan J, Wei J H, Li Y J, et al. Origin and Geodynamic Significance of Fault-Hosted Massive Sulfide Gold Deposits from the Guocheng-Liaoshang Metallogenic Belt, Eastern Jiaodong Peninsula:Rb-Sr Dating, and H-O-S-Pb Isotopic Constraints[J]. Ore Geology Reviews, 2015, 65:687-700.
[24] Tan J, Wei J H, He H Y, et al. Noble Gases in Pyrites from the Guocheng-Liaoshang Gold Belt in the Jiaodong Province:Evidence for a Mantle Source of Gold[J]. Chemical Geology, 2018, 480:105-115.
[25] 郭敬辉,陈福坤,张晓曼,等. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J]. 岩石学报, 2005, 21(4):1281-1301. Guo Jinghui, Chen Fukun, Zhang Xiaoman, et al. Evolution of Syn- to Post-Collisional Magmatism from North Sulu UHP Belt, Eastern China:Zircon U-Pb Geochronology[J]. Acta Petrologica Sinica, 2005, 21(4):1281-1301.
[26] 胡芳芳,范宏瑞,杨奎锋,等. 胶东牟平邓格庄金矿床流体包裹体研究[J]. 岩石学报, 2007, 23(9):2155-2164. Hu Fangfang, Fan Hongrui, Yang Kuifeng, et al. Fluid Inclusions in the Denggezhuang Lode Gold Deposit at Muping, Jiaodong Peninsula[J]. Acta Petrologica Sinica, 2007, 23(9):2155-2164.
[27] Zhang J, Zhao Z F, Zheng Y F, et al. Postcollisional Magmatism:Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China[J]. Lithos, 2010, 119(3/4):512-536.
[28] 张田,张岳桥. 胶东半岛中生代侵入岩浆活动序列及其构造制约[J]. 高校地质学报, 2007, 13(2):323-336. Zhang Tian, Zhang Yueqiao. Geochronological Sequence of Mesozoic Intrusive Magmatism in Jiaodong Peninsula and Its Tectonic Constraints[J]. Geological Journal of China Universities, 2007, 13(2):323-336.
[29] Wu L,Monié P, Wang F, et al. Multi-Phase Cooling of Early Cretaceous Granites on the Jiaodong Peninsula, East China:Evidence from 40Ar/39Ar and (U-Th)/He Thermochronology[J]. Journal of Asian Earth Sciences, 2018, 160:334-347.
[30] Goss S C, Wilde S A, Wu F, et al. The Age, Isotopic Signature and Significance of the Youngest Mesozoic Granitoids in the Jiaodong Terrane, Shandong Province, North China Craton[J]. Lithos, 2010, 120(3/4):309-326.
[31] Guo F, Fan W M, Wang Y J, et al. Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China:Implications for Enrichment Processes Beneath Continental Collisional Belt[J]. Lithos, 2004, 78(3):291-305.
[32] Liang Y J, Deng J, Liu X F, et al. Major and Trace Element, and Sr Isotope Compositions of Clinopyroxene Phenocrysts in Mafic Dykes on Jiaodong Peninsula, Southeastern North China Craton:Insights into Magma Mixing and Source Metasomatism[J]. Lithos, 2018, 302/303:480-495.
[33] Liu S, Hu R Z, Gao S, et al. Petrogenesis of Late Mesozoic Mafic Dykes in the Jiaodong Peninsula, Eastern North China Craton and Implications for the Foundering of Lower Crust[J]. Lithos, 2009, 113(3/4):621-639.
[34] Cai Y C, Fan H R, Santosh M, et al. Subduction-Related Metasomatism of the Lithospheric Mantle Beneath the Southeastern North China Craton:Evidence from Mafic to Intermediate Dykes in the Northern Sulu Orogen[J]. Tectonophysics, 2015, 659:137-151.
[35] Li Q, Li S R, Li L, et al. Dyke Swarms and Their Role in the Genesis of World-Class Gold Deposits:Insights from the Jiaodong Peninsula, China[J]. Journal of Asian Earth Sciences, 2016, 130:2-22.
[36] Bodnar R J. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3):683-684.
[37] 刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 1987, 7(4):345-352. Liu Bin,Duan Guangxian. Density and Isometric Formulation of NaCl-H2O Solution Inclusion and Its Application[J]. Acta Mineralogica Sinica, 1987, 7(4):345-352.
[38] 邵洁涟,梅建明. 浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义[J]. 矿物岩石, 1986, 6(3):103-110. Shao Jielian, Mei Jianming. Characterization of Mineral Inclusions in Gold Deposits in Volcanic Rocks of Zhejiang Province and Its Genesis and Prospecting Significance[J]. Journal of Mineralogy and Petrology, 1986, 6(3):103-110.
[39] 孙丰月,金巍,李碧乐,等. 关于脉状热液金矿床成矿深度的思考[J]. 长春科技大学学报, 2000, 30(增刊):27-30. Sun Fengyue, Jin Wei, Li Bile, et al. Considerations on the Mineralizing Depth of Hydrothermal Lode Gold Deposits[J]. Journal of Changchun University of Science and Technology, 2000, 30(Sup.):27-30.
[40] Sibson R H, Robert F, Poulsen K H. High-Angle Reverse Faults, Fluid-Pressure Cycling, and Mesothermal Gold-Quartz Deposit[J]. Geology, 1988, 16(6):551-555.
[41] Coleman M L, Shepherd T J, Durham J J, et al. Reduction of Water with Zinc for Hydrogen Isotope Analysis[J]. Analytical Chemistry, 1982, 54(6):993-995.
[42] Clayton R N, Mayeda T K. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27(1):43-52.
[43] Clayton R N, O'Neil J R, Mayeda T K. Oxygen Isotope Exchange Between Quartz and Water[J]. Journal of Geophysical Research, 1972, 77(17):3057-3067.
[44] 陈海燕. 胶东金青顶金矿成因矿物学与深部远景研究[D]. 北京:中国地质大学(北京), 2010. Chen Haiyan. Mineralogy and deep Prospects of the Jinqingding Gold Deposit, Jiaodong[D]. Beijing:China University of Geosciences(Beijing), 2010.
[45] 安家桐,于东斌,沈昆,等.山东牟平-乳山地区金矿控矿条件的研究[C]//沈阳地质矿产研究所. 中国金矿主要类型区域成矿条件文集:5:胶东地区. 北京:地质出版社, 1988:1-45. An Jiadong, Yu Dongbin, Shen Kun, et al. Ore-Controlling Conditions of Gold Deposits in Luping-Rushan Area, Shandong Province[C]//Shenyang Institute of Geology and Mineral Resources. Collection of Metallogenic Conditions for Major Types of Gold Deposits in China:5:Jiaodong. Beijing:Geological Publishing House, 1988:1-45.
[46] 李兆龙,杨敏之. 胶东金矿床地质地球化学[M]. 天津:天津科学技术出版社, 1993. Li Zhaolong, Yang Minzhi. Geological Geochemistry of Jiaodong Gold Deposit[M]. Tianjin:Tianjin Science and Technology Press, 1993.
[47] 胡芳芳,范宏瑞,杨进辉,等. 胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U-Pb测定[J]. 科学通报, 2004, 49(12):1191-1198. Hu Fangfang, Fan Hongrui, Yang Jinhui, et al. Mineralization Age of Gold-Bearing Quartz Vein Type Gold Deposit in Rudong, Jiaodong:SHRIMP U-Pb Determination of the Hydrothermal Zircons[J]. Chinese Science Bulletin, 2004, 49(12):1191-1198.
[48] 陈炳翰. 牟乳金矿带成矿作用地球化学[D]. 北京:中国地质大学(北京), 2017. Chen Binghan. Gold Mineralization Geochemistry in Muping-Rushan Gold Belt, Jiaodong Peninsula, China[D]. Beijing:China University of Geosciences(Beijing), 2017.
[49] 赵富远. 胶东三佛山早白垩世花岗岩磷灰石、锆石裂变径迹研究[D]. 北京:中国地质大学(北京), 2015. Zhao Fuyuan. Study on Apatite and Zircon Fission-Track of Early Cretaceous Granite of Sanfoshan in Jiaodong[D]. Beijing:China University of Geosciences(Beijing), 2015.
[50] 张华锋,李胜荣,翟明国,等. 胶东半岛早白垩世地壳隆升剥蚀及其动力学意义[J]. 岩石学报, 2006, 22(2):285-295. Zhang Huafeng, Li Shengrong. Zhai Mingguo, et al. Crust Uplift and Its Implications in the Jiaodong Peninsula, Eastern China[J]. Acta Petrologica Sinica, 2006, 22(2):285-295.
[51] Smf S. Characterization and Isotopic Variations in Natural Waters[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(6):165-183.
[52] Wen B J, Fan H R, Santosh M, et al. Genesis of Two Different Types of Gold Mineralization in the Linglong Gold Field, China:Constrains from Geology, Fluid Inclusions and Stable Isotope[J]. Ore Geology Reviews, 2015, 65:643-658.
[53] 江思宏,聂凤军,张义,等. 浅成低温热液型金矿床研究最新进展[J]. 地学前缘, 2004, 11(2):401-411. Jiang Sihong, Nie Fengjun, Zhang Yi, et al. The Latest Advances in the Research of Epithermal Deposits[J]. Earth Science Frontiers, 2004, 11(2):401-411.
[54] Kerrich R, Goldfarb R, Groves D, et al. The Characteristics, Origins, and Geodynamic Settings of Supergiant Gold Metallogenic Provinces[J]. Science in China:Series D:Earth Sciences, 2000, 43(Sup.1):1-68.
[55] 陈衍景,倪培,范宏瑞,等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007, 23(9):2085-2108. Chen Yanjing, Ni Pei, Fan Hongrui, et al. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits[J]. Acta Peteologica Sinica, 2007, 23(9):2085-2108.
[56] 毛景文,张作衡,余金杰,等. 华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J]. 中国科学:D辑:地球科学, 2003, 33(4):289-299. Mao Jingwen, Zhang Zuoheng, Yu Jinjie, et al. Geodynamic Settings of Mesozoic Large-Scale Mineralization in North China and Adjacent Areas:Implication from the Highly Precise and Accurate Ages of Metal Deposits[J]. Science in China:Series D:Earth Sciences, 2003, 33(4):289-299.
[57] 蒋少涌,戴宝章,姜耀辉,等. 胶东和小秦岭:两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25(11):2727-2738. Jiang Shaoyong, Dai Baozhang, Jiang Yaohui, et al. Jiaodong and Xiaoqinling:Two Orogenic Gold Provinces Formed in Different Tectonic Settings[J]. Acta Petrologica Sinca, 2009, 25(11):2727-2738.
[58] 朱日祥,范宏瑞,李建威,等. 克拉通破坏型金矿床[J]. 中国科学:地球科学, 2015, 45(8):1153-1168. Zhu Rixiang, Fan Hongrui, Li Jianwei, et al. Decratonic Gold Deposits[J]. Science China:Earth Sciences, 2015, 45(8):1153-1168.
[59] 陈衍景. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质, 2006, 33(6):1181-1196. Chen Yanjing. Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential[J]. Geology in China, 2006, 33(6):1181-1196.
[1] 孙丰月, 王睿, 王一存, 李顺达, 王可勇, 石开拓, 孙清飞, 王文元. 内蒙古碾子沟钼矿床成矿流体来源、演化及成矿机理[J]. 吉林大学学报(地球科学版), 2020, 50(3): 768-780.
[2] 梁小龙, 孙景贵, 邱殿明, 徐智涛, 谷小丽, 任泽宁. 大兴安岭西坡比利亚谷银铅锌多金属矿床成因[J]. 吉林大学学报(地球科学版), 2020, 50(3): 781-799.
[3] 赵迎冬. 流体包裹体中盐度分析与应用——以福山凹陷为例[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1261-1269.
[4] 吴猛, 李怡欣, 刘桂香. 黑龙江省老柞山金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1353-1364.
[5] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[6] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[7] 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104.
[8] 和成忠, 张德会, 吴鸣谦, 夏岩, 张荣臻, 胡铁军. 辽宁青城子姚家沟斑岩型钼矿流体包裹体[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1717-1731.
[9] 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404.
[10] 门兰静, 孙景贵, 王好均, 柴鹏, 赵克强, 古阿雷, 刘城先. 延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1365-1382.
[11] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[12] 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[13] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
[14] 张延军, 孙丰月, 李碧乐, 李良, 陈扬. 青海湟中县三岔金矿流体包裹体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1342-1353.
[15] 王晰, 段明新, 任云生, 侯召硕, 孙德有, 郝宇杰. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1354-1367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!