吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1211-1218.doi: 10.13278/j.cnki.jjuese.20190102

• 地球探测与信息技术 • 上一篇    

低温超导瞬变电磁法在内蒙古四子王旗地质勘探中的应用

包苏新1,2,3, 董丙元1,2,3, 裴易峰1,2, 荣亮亮1,2, 邱隆清1,2, 杜尚宇4   

  1. 1. 中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室, 上海 200050;
    2. 中国科学院超导电子学卓越创新中心, 上海 200050;
    3. 中国科学院大学, 北京 100049;
    4. 吉林大学仪器科学与电气工程学院, 长春 130026
  • 收稿日期:2019-04-30 发布日期:2020-07-29
  • 通讯作者: 裴易峰(1989-),助理研究员,硕士,主要从事超导在地球物理领域应用方面的研究,E-mail:peiyifeng@mail.sim.ac.cn E-mail:peiyifeng@mail.sim.ac.cn
  • 作者简介:包苏新(1995-),硕士研究生,主要从事超导应用方面的研究,E-mail:bsx@mail.sim.ac.cn
  • 基金资助:
    国家自然科学基金项目(61873256)

Application of Low Temperature TEM to Geological Exploration in Siziwangqi, Inner Mongolia

Bao Suxin1,2,3, Dong Bingyuan1,2,3, Pei Yifeng1,2, Rong Liangliang1,2, Qiu Longqing1,2, Du Shangyu4   

  1. 1. State Key Laboratory of Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
    2. Center of Excellence in Superconducting Electronics, Chinses Academy of Sciences, Shanghai 200050, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130026, China
  • Received:2019-04-30 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China (61873256)

摘要: 瞬变电磁法(transient electromagnetic method,TEM)是金属矿探查的有效手段。超导瞬变电磁法采用高灵敏度低温超导量子干涉器件(superconducting quantum interference device,SQUID)直接接收瞬变电磁二次场,具有本征噪声低(5~7 fT/√Hz)和带宽大(>200 kHz)等特点,勘探浅层分辨率高、探测深度大,优势明显。本文将SQUID系统与商用EM67系统进行了异常环对比实验,验证了以SQUID代替感应线圈作为接收装置的优势与实用性;将该方法应用于内蒙古四子王旗大井坡北部区域的电磁勘探工作,获取了高质量探测数据,反演结果显示浅层和中深层(> 2 000 m)为连续性低阻层;在已有地质资料和物探资料的基础上,结合反演结果可知,测线附近浅层500 m存在北东向断裂带,并推断深部2 000 m处分布着同向断裂带。

关键词: 瞬变电磁法, 超导量子干涉器件, 四子王旗, 断裂带

Abstract: Transient electromagnetic method (TEM) is widely used in metal mine exploration. Based on the new receiving technology of SQUID (superconducting quantum interference device), the TEM has the advantages of low intrinsic noise (5~7 fT/√Hz) and large bandwidth (>200 kHz). As an important mineral reserve, Siziwangqi in Inner Mongolia is rich in mineral resources. The reliability of SQUID instead of induction coil was verified by comparing the experimental results of the anomalous rings obtained by superconducting receiving system and EM67 TEM instrument. The superconducting TEM method was applied to the northern area of Dajingpo, Siziwangqi, Inner Mongolia. The underground anomalous response information in shallow and deep layers (>2 000 m) was obtained to deduce a continuous low resistivity layer. Combined with the existing geological and geophysical data, the inversion results effectively reveal a north-east trending fault zone at 500 m in the shallow layer near the survey line, and then infer that there is a similar trending fault zone at 2 000 m in the deep layer.

Key words: transient electromagnetic method, superconducting quantum interference device, Siziwangqi, fault zone

中图分类号: 

  • P631
[1] 嵇艳鞠, 林君, 程德福,等. ATEM-Ⅱ瞬变电磁仪数据处理软件的研制与应用[J]. 吉林大学学报(地球科学版), 2003, 33(2):242-245. Ji Yanju, Lin Jun, Cheng Defu, et al. Development and Application of Data Processing Software of ATEM-ⅡTransient Electromagnetic Instrument[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(2):242-245.
[2] 嵇艳鞠, 林君, 于生宝, 等. ATEM瞬变电磁系统在长春市活断层勘探中的应用[J]. 吉林大学学报(地球科学版), 2005, 35(增刊1):103-107. Ji Yanju, Lin Jun, Yu Shengbao, et al. Sounding Application of ATEM Instrument in Changchun Active Fault[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(Sup. 1):103-107.
[3] Spies B R, Eggers D E.The Use and Misuse of Apparent Resistivity in Electromagnetic Methods[J]. Geophysics, 1986, 51(7):1462-1471.
[4] Clarke J. Geophysical Applications of SQUIDS[J]. IEEE Transactions on Magnetics, 1983, 19(3):288-294.
[5] Wang S G, Zhang L H, Wang C J, et al.Application of High Temperature Superconducting Quantum Interference Devices in Transient Electromagnetic Method for Magnetotelluric Soundings[J]. Physica C, 1997, 282/283/284/285/286/287:411-414.
[6] 陈晓东,赵毅,张杰,等.高温超导磁强计在瞬变电磁法中的应用研究[J].地球物理学报,2012, 55(2):702-708. Chen Xiaodong, Zhao Yi,Zhang Jie, et al. The Applications of HTc SQUID Magnetometer to TEM[J]. Chinese Journal of Geophysics, 2012, 55(2):702-708.
[7] Clarke J, Braginski A I. The SQUID Handbook[M]. Weinheim:Wiley-Vch, 2004.
[8] 荣亮亮, 蒋坤, 裴易峰, 等. 适用于瞬变电磁勘探的低温超导磁传感器[J]. 仪器仪表学报, 2016, 37(12):2671-2677. Rong Liangliang, Jiang Kun, Pei Yifeng, et al. Low-Tc SQUID Sensor for Time Domain Electromagnetic Prospecting[J]. Chinese Journal of Scientific Instrument, 2016, 37(12):2671-2677.
[9] 张婉, 刘英会, 朱卫平, 等. 大井坡航空地球物理试验场典型剖面综合地球物理解释[J]. 吉林大学学报(地球科学版), 2016, 46(2):569-580. Zhang Wan, Liu Yinghui, Zhu Weiping, et al.Comprehensive Geophysical Interpretation of Typical Profiles of Aviation Geophysical Test Site at Dajingpo[J]. Journal of Jilin University (Geoscience Edition), 2016, 46(2):569-580.
[10] 彭芳苹, 董良, 葛志广. 航空物探试验场地面地球物理场特征分析[J]. 工程地球物理学报, 2014,11(1):118-122. Peng Fangping, Dong Liang, Ge Zhiguang. The Analysis of Geophysical Characteristics of Airborne Geophysical Testing Ground[J]. Chinese Journal of Engineering Geophysics, 2014, 11(1):118-122.
[11] 李凤仁, 张赋. 内蒙古四子王旗夏尔楚鲁金矿床地质特征及成因[J]. 地质与资源, 2012, 21(4):350-353. Li Fengren, Zhang Fu. Geology and Genesis of the Xiaerchulu Gold Deposit in Inner Mongolia[J]. Geology and Resources, 2012, 21(4):350-353.
[12] 朱卫平, 熊盛青, 刘英会,等. 大井坡航空地球物理试验场选场原则与方法[J]. 物探与化探, 2013, 37(1):98-103. Zhu Weiping, Xiong Shengqing, Liu Yinghui, et al. Selection Principles and Methods of Dajingpo Airborme Geophysical Test Site[J]. Geophysical and Geochemical Exploration, 2013, 37(1):98-103.
[13] 裴易峰,荣亮亮,张懿,等.低温SQUID瞬变电磁法中去除地磁场影响的方法研究[J].地球物理学进展, 2019, 34(2):212-217. Pei Yifeng, Rong Liangliang, Zhang Yi, et al. Study on the Method of Removing the Effect of Geomagnetic Field in Low Temperature SQUID Transient Electromagnetic Method[J]. Progress in Geophysics, 2019, 34(2):212-217.
[14] Ji Y, Du S, Xie L, et al. TEM Measurement in a Low Resistivity Overburden Performed by Using Low Temperature SQUID[J]. Journal of Applied Geophysics, 2016, 135:243-248.
[15] Du S, Zhang Y, Pei Y, et al. Study of Transient Electromagnetic Method Measurements Using a Superconducting Quantum Interference Device as B Sensor Receiver in Polarizable Survey Area[J]. Geophysics, 2018, 83(2):E111-E116.
[1] 刘洪波, 吴治国, 郑孝诚, 王恩强, 王玉敏, 张宁. 沂沭断裂带莱州湾海域重力场特征[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1438-1447.
[2] 姜大朋, 何敏, 张向涛, 彭光荣, 牛胜利, 李振升. 箕状断陷控洼断裂上下盘油气成藏差异性及勘探实践——以南海北部珠江口盆地惠州凹陷X洼为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 346-355.
[3] 牛子铖, 柳广第, 国殿斌, 王朋, 张家舲, 赵其磊. 查干凹陷中央构造带不同断阶带原油成熟度特征差异及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1047-1059.
[4] 陈帅, 李桐林, 张镕哲. 考虑激发极化效应的瞬变电磁一维Occam反演[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1278-1285.
[5] 刘敬寿, 戴俊生, 徐珂, 张艺, 丁文龙. 构造裂缝产状演化规律表征方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 84-94.
[6] 杨海燕, 岳建华, 徐正玉, 张华, 姜志海. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1527-1537.
[7] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[8] 董大伟, 李理, 王晓蕾, 赵利. 准噶尔盆地西缘车排子凸起构造演化及断层形成机制[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1132-1141.
[9] 马云, 李三忠, 刘鑫, 赵淑娟, 余珊, 王霄飞, 张丙坤. 华南北部湾盆地的形成机制[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1727-1736.
[10] 王伟锋,周维维,周杰,李少龙. 金湖凹陷隐性断裂带形成机制及分布[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1395-1405.
[11] 孟宪纲,薄万举,刘志广,刘勇,畅柳,李朝柱,王子平. 芦山7.0级地震与巴颜喀拉块体中东段的活动性[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1705-1711.
[12] 郄莹,付晓飞,孟令东,许鹏. 碳酸盐岩内断裂带结构及其与油气成藏[J]. 吉林大学学报(地球科学版), 2014, 44(3): 749-761.
[13] 杨海燕,邓居智,汤洪志,林云. 全空间瞬变电磁法资料解释方法中的平移算法[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1012-1017.
[14] 杨为民,黄晓,张春山,司海宝. 白龙江流域坪定-化马断裂带滑坡特征及其形成演化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 574-583.
[15] 付晓飞,肖建华,孟令东. 断裂在纯净砂岩中的变形机制及断裂带内部结构[J]. 吉林大学学报(地球科学版), 2014, 44(1): 25-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!