吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1795-1803.doi: 10.13278/j.cnki.jjuese.20200023

• 地质工程与环境工程 • 上一篇    

堰塞坝漫顶溃决过程溃口纵向下切与溯源

刘杰, 李丽华, 林跃水, 陈伟, 李晓明   

  1. 攀枝花学院土木与建筑工程学院, 四川 攀枝花 617000
  • 收稿日期:2020-02-06 发布日期:2020-12-11
  • 通讯作者: 陈伟(1966-),男,教授,主要从事土木工程,工业废弃物再利用等方面的研究,E-mail:pzhxycw@163.com E-mail:pzhxycw@163.com
  • 作者简介:刘杰(1986-),男,讲师,博士,主要从事土石坝溃决、工程力学等方面的研究,E-mail:pzhjieliu@126.com
  • 基金资助:
    四川省高等学校重点实验室科研项目(SC_FQWLY-2019-Z-03);2018年高校博士科研启动基金(035200078);四川省教育厅项目(18ZB0339)

Depth Erosion and Tracing of Overtopping Landslide Dam Breach

Liu Jie, Li Lihua, Lin Yueshui, Chen Wei, Li Xiaoming   

  1. College of Civil and Building Engineering, Panzhihua College, Panzhihua 617000, Sichuan, China
  • Received:2020-02-06 Published:2020-12-11
  • Supported by:
    Supported by University Key Laboratory Scientific Research Project of Sichuan Province(SC_FQWLY-2019-Z-03), University Doctoral Research Start-up Fund of 2018 (035200078) and Sichuan Education Department Project(18ZB0339)

摘要: 为进一步了解堰塞坝溃坝过程,开展了9组水槽模型试验,对溃口纵向下切和溯源发展过程进行了系统分析,并讨论了上溯源点移动速度与溃口水深之间的关系。研究发现:非黏性堰塞坝溃坝过程中,冲刷面与底床的夹角时刻发生变化,上、下溯源点位置不固定但也不能完全发展到坝踵;上、下坡面坡度增大到最大值1:1.5时,下溯源点到下游坝趾的最大距离与坝体沿水流方向长度的比值(xp*/xd*,反映下溯源点最终相对位置)对应降低到最小值0.24和0.18;坝体相对尺寸从1减小到1/2时,xp*/xd*值从0.38增大到0.47。上溯源点的无量纲移动速度是不断变化的,在无量纲时刻为0.13时,其x,y分量分别达到峰值0.94和0.32;上溯源点处溃口水深出现时刻相对移动速度峰值点出现时刻有延迟,大概延迟0.04个无量纲时间。

关键词: 堰塞坝, 溃口发展, 纵向下切, 溯源, 漫顶

Abstract: In order to understand the failure process of landslide dam, nine sets of flume model experiments were conducted, the depth erosion and tracing of dam breach was further discussed, and the relationship of moving velocity of up-tracing point and breach depth was also analyzed. The results indicated that the angles between the erosion layer and the base bed were changing during the dam failure of non-cohesive landslide dam; The locations of up-tracing and down-tracing point were unfixed,but they could not move to the dam heel; When the slope of the upstream and downstream face slope increased to a maximum of 1:1.5, the ratio of the maximum distance from down-tracing point to downstream toe of the dam to the length of the dam along the flow direction (reflecting the final relative position of the down-tracing point) was correspondingly reduced to the minimum values of 0.24 and 0.18; When the relative scale of the dam reduced from 1 to 1/2, the value of xp*/xd* was correspondingly increased from 0.38 to 0.47. The dimensionless moving velocity of up-tracing point was constantly changing; There was a time delay of the peak breach water depth relative to the peak moving velocity, and the dimensionless delay time was about 0.04.

Key words: landslide dam, breach developing, depth erosion, tracing, overtopping

中图分类号: 

  • P642.22
[1] 周兴波,杜效鹄,姚虞. 金沙江白格堰塞湖溃坝洪水分析[J]. 水力发电, 2019,45(3):8-13. Zhou Xingbo,Du Xiaohu,Yao Yu. Research and Analysis on Baige Landslide Dam Break Flood in Jinsha River[J]. Water Power, 2019, 45(3):8-13.
[2] 陈祖煜,雷盼,张强,等. 白格堰塞体风险后评估:再次堵江洪水分析和应对措施[J]. 水利规划与设计, 2020(1):1-5, 48. Chen Zuyu, Lei Pan, Zhang Qiang, et al. Post-Evaluation of the Risk of Baige Weir Plug:Analysis and Response Measures of the River Flood[J]. Water Resources Planning and Design, 2020(1):1-5, 48.
[3] 刘定竺,崔鹏,蒋德旺. 堰塞坝溃口展宽过程实验研究[J]. 中国水土保持科学, 2017, 15(6):19-26. Liu Dingzhu, Cui Peng, Jiang Dewang. Experimental Study on Breach Broadening Process of Landslide Dam[J]. Science of Soil and Water Conservation, 2017, 15(6):19-26.
[4] 王立辉,胡四一. 溃坝问题研究综述[J]. 水利水电科技进展, 2007,27(1):80-85. Wang Lihui, Hu Siyi. Study on Dam Failure-Related Problems[J]. Advanced in Science and Technology of Water Resources, 2007, 27(1):80-85.
[5] ASCE/EWRI Task Committee on Dam/Levee Breach. Earthen Embankment Breaching[J]. Journal of Hydraulic Engineering, 2011,137:1549-1564.
[6] Coleman S E, Andrews D P, Webby M G. Overtopping Breaching of Noncohesive Homogeneous Embankments[J]. Journal of Hydraulic Engineering, 2002, 128(9):829-838.
[7] Hanson G J, Temple D M, Hunt S L,et al. Development and Characterization of Soil Material Parameters for Embankment Breach[J]. Journal of Application Engineering in Agriculture, 2011, 27(4):587-595.
[8] Morris M W. IMPACT, Investigation of Extreme Flood Processes and Uncertainty, Final Technical Report[EB/OL]. (20030820) [20191231]. http://www.impact-project.net/AnnexII_Detailed Technical Reports/AnnexII_PartE1_WP6/IMPACT-D6.3attach.pdf.
[9] Awal R, Nakagawa H, Fujita M, et al. Experimental Study on Glacial Lake Outburst Floods Due to Waves Overtopping and Erosion of Moraine Dam[J]. Annals of Disaster Prevention Research Institute, 2010, 53:583-594.
[10] Al-Riffai. Experimental Study of Breach Mechanics in Overtopped Noncohesive Earthen Embankments[D]. Ottawa:Ottawa University, 2014.
[11] Walder J S, Iverson R M, Godt J W, et al. Controls on the Breach Geometry and Flood Hydrograph During Overtopping of Noncohesive Earthen Dams[J]. Water Resources Research, 2015, 51(8):6701-6724.
[12] Zhao Gensheng. Breach Growth in Cohesive Embankments Due to Overtopping[D]. Wuhan:Changjiang River Scientific Research Institute, China, 2016.
[13] 张建云, 李云, 宣国祥,等. 不同黏性均质土坝漫顶溃坝实体试验研究[J]. 中国科学:E辑:技术科学, 2009, 39(11):1881-1886. Zhang Jianyun, Li Yun, Xuan Guoxiang, et al. Overtopping Breaching of Cohesive Homogeneous Earth Dam with Different Cohesive Strength[J]. Science of China:Series E:Technical Science, 2009, 39(11):1881-1886.
[14] 林秉南.明渠不恒定流研究的现状与发展[M]//林秉南论文集.北京:中国水利水电出版社,2001:340-373. Lin Bingnan. Research Status and Development of Unsteady Flow in Open Channel[M]//Lin Bingnan Collection of Essays. Beijing:China Water Resources and Hydropower, 2001:340-373.
[15] 柴贺军,刘汉超,张倬元, 等. 天然土石坝稳定性初步研究[J].地质科技情报,2001, 20(1):77. Chai Hejun,Liu Hanchao,Zhang Daoyuan,et al. Preliminarily Stability Analysis of Natural Rockfield Dam Resulting from Damming Landslide[J]. Geological Science and Technology Information, 2001, 20(1):77.
[16] 王道正, 陈晓清, 罗志刚, 等. 不同颗粒级配条件下堰塞坝溃决特征试验研究[J]. 防灾减灾工程学报, 2016, 36(5):827-833 Wang Daozheng, Chen Xiaoqing, Luo Zhigang, et al. Experimental Research on Breaking of Barrier Lake Dam Under Different Grading Conditions[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(5):827-833.
[17] 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1):203-212. Fu Jiankang, Luo Gang, Hu Xiewen. Physical Model Experiment on Overtopping Failure of Landslide Dam[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1):203-212.
[18] 赵高文, 姜元俊. 不同密实条件的滑坡堰塞坝漫顶溃决实验[J]. 岩石力学与工程学报, 2018, 37(6):1496-1505. Zhao Gaowen, Jiang Yuanjun. Experimental Investigation on Overtopping Failure of Landslide Dams with Different Conditions of Compactness[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6):1496-1505.
[19] 蒋先刚, 吴雷. 不同底床坡度下的堰塞坝溃决过程研究[J]. 岩石力学与工程学报, 2019, 38(1):3008-3014. Jiang Xiangang, Wu Lei. Influence of Bed Slope on Breaching Process of Natural Dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1):3008-3014.
[20] 蒋先刚, 吴雷. 不同初始含水量条件下的堰塞坝溃决机理分析[J]. 吉林大学学报(地球科学版), 2020, 50(1):185-193. Jiang Xiangang, Wu Lei. Influence of Initial Soil Moisture on Breaching Mechanism of Natural Dam[J]. Journal of Jilin University(Earth Science Edition), 50(1):185-193.
[21] 刘杰, 颜婷, 周传兴, 等. 初始含水率及人工干预对堰塞坝溃决影响试验研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(3):60-67. Liu Jie, Yan Ting, Zhou Chuanxing, et al. Experimental Investigation of Landslide Dam Failure Influenced by Initial Moisture Content and Manual Intervention[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2019, 38(3):60-67.
[22] Morris M W, Hanson G, Hassan M. Improving the Accuracy of Breach Modeling:Why are We not Progressing Faster?[J]. Journal of Flood Risk Management, 2008, 1(3):150-161.
[1] 蒋先刚, 吴雷. 不同初始含水量条件下的堰塞坝溃决机理[J]. 吉林大学学报(地球科学版), 2020, 50(1): 185-193.
[2] 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212.
[3] 郑光,许强,林峰,巨能攀,邓茂林,汪新芳. 2012年6·29贵州岑巩龙家坡滑坡灾害的基本特征与成因机理:一个由侧向剪切扰动诱发大型滑坡的典型案例[J]. 吉林大学学报(地球科学版), 2014, 44(3): 932-945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!