吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 843-853.doi: 10.13278/j.cnki.jjuese.20200078
王哲1, 付宇2, 朱静思1, 曹文庚3
Wang Zhe1, Fu Yu2, Zhu Jingsi1, Cao Wengeng3
摘要: 针对华北地区严重的地下水超采问题,选取河北境内的滹沱河、滏阳河、南拒马河3条补水河道的试点河段开展地下水回补效果评价。采用层次分析法,建立了包括入渗回补率、地下水水位回升率、水质改善度、水面面积变化率、水生态改善度和公众满意度等6项指标的地下水回补效果评价指标体系;选择简便实用的指标计算方法对河段补水前后指标的变化进行计算分析,并对生态补水的效果进行评价分级。结果表明:补水结束时,滹沱河、滏阳河、南拒马河3条试点河段的平均入渗回补率为65%,地下水水位相对回升率为分别为36%,17%,6%,水质改善度依次为51%,34%,90%,水面面积总计增加了8.56 km2,水生态改善度依次为46%,87%,94%,公众满意度分别为90%,90%,80%。利用建立的地下水回补效果评价方法计算滹沱河、滏阳河、南拒马河综合得分分别为84,47,64分,评价等级分别为"非常好" "一般" "较好"。3条试点河段评价结果与实际补水效果基本一致。
中图分类号:
[1] 张兆吉,费宇红,郭春艳,等.华北平原区域地下水污染评价[J].吉林大学学报(地球科学版),2012,42(5):1456-1461. Zhang Zhaoji,Fei Yuhong,Guo Chunyan, et al. Regional Groundwater Contamination Assessment in the North China Plain[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(5): 1456-1461. [2] 庄建琦,彭建兵,张利勇.不同降雨条件下黄土高原浅层滑坡危险性预测评价[J].吉林大学学报(地球科学版),2013,43(3):867-875. Zhuang Jianqi,Peng Jianbing,Zhang Liyong. Risk Assessment and Prediction of the Shallow Landslide at Different Precipitation in Loess Plateau[J]. Journal of Jilin University (Earth Science Edition), 2013,43(3):867-875. [3] 曹阳,申月芳,焦志亮,等.中新天津生态城孔隙水化学垂向分布及其成因[J].吉林大学学报(地球科学版),2019,49(4):1109-1120. Cao Yang,Shen Yuefang,Jiao Zhiliang,et al. Pore Water Vertical Chemistry Distribution and Origin Analysisin Sino-Singapore Tianjin Eco-City[J]. Journal of Jilin University(Earth Science Edition),2019,49(4):1109-1120. [4] 刘博,肖长来,梁秀娟.SOM-RBF神经网络模型在地下水位预测中的应用[J].吉林大学学报(地球科学版),2015, 45(1): 225-231. Liu Bo,Xiao Changlai,Liang Xiujuan. Application of Combining SOM and RBF Neural Network Model for Groundwater Levels Prediction[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 225-231. [5] 韩忠,邵景力,崔亚莉,等. 基于MODFLOW的地下水流模型前处理优化[J].吉林大学学报(地球科学版),2014,44(4):1290-1296. Han Zhong,Shao Jingli,Cui Yali,et al. Preprocessing Optimization of Groundwater Flow Model Based on MODFLOW[J]. Journal of Jilin University(Earth Science Edition),2014,44(4):1290-1296. [6] 李云峰,郑书彦.引黄回灌研究[M].西安:陕西科技出版社,1996:3-11. Li Yunfeng,Zheng Shuyan. Study on Reinjection of Yellow River[M]. Xi’an:Shaanxi Science and Technology Press,1996:3-11. [7] 黄国如,胡和平,尹大凯.地下水人工回灌研究进展[M].郑州:黄河水利出版社,2001. Huang Guoru,Hu Heping,Yin Dakai. Research Progress of Artificial Recharge of Groundwater[M].Zhengzhou:Yellow River Water Conservancy Press,2001. [8] 俞俊英,李勤奋,乔坚强.上海市地下水超采现状及防范措施[J].地下水,2000,22(4):143-147. Yu Junying,Li Qinfen,Qiao Jianqiang. The Present Situation and Preventive Measures of Groundwater Overexploitation in Shanghai[J]. Groundwater, 2000,22(4):143-147. [9] 孙颖,苗礼文.北京市深井人工回灌现状调查与前景分析[J].水文地质工程地质,2001,28(1):69-72. Sun Ying,Miao Liwen. Investigation and Prospect Analysis of Artificial Deep Well Reinjection in Beijing[J]. Hydrogeology & Engineering Geology, 2001, 28(1):69-72. [10] Effects of Artificial Recharge on Water Quality in the Equus Beds Aquifer, South-Central Kansas[C]//U S Geological Survey Artificial Recharge Workshop Proceedings. Sacramento:USGS, 2002. [11] Dillon P J. Management of Aquifer Recharge for Sustainability[M].Netherlands: A A Balkema Pubishers, 2002. [12] Sanford W. Recharge and Groundwater Models: An Overview[J]. Hydrogeology Journal, 2002, 10(1): 110-120. [13] Lemer D N, Issar A S, Simmers I. Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge[J]. International Conteibution to Hydrogeology, Verlag Heinz Heise, 1990, 8:345. [14] Bhagyawant R G. Studies on the Effect of Percolation Tank in Augmenting the Ground Water Recharge[J]. Internat J Agric Sci,2008,4(1):359-362. [15] Lakshmanan E. Assessment of Effect of Recharge from a Check Dam as a Method of Managed Aquifer Recharge by Hydrogeological Investigations[J]. Environmental Earth Sciences,2015,73(9):5349-5361. [16] 叶守泽,詹道江. 工程水文学[M]. 北京:中国水利水电出版社出版,2005. Ye Shouze, Zhan Daojiang. Engineering Hydrology[M]. Beijing: China Water Conservancy and Hydropower Press,2005. |
[1] | 李超峰. 水力联系系数法定量评价含水层之间水力联系[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1801-1810. |
[2] | 刘元晴, 周乐, 李伟, 王新峰, 马雪梅, 吕琳, 尹凯, 孟顺祥. 鲁中山区中生代构造活动对现今岩溶地下水赋存规律的控制作用[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1811-1822. |
[3] | 潘维强, 张黎明, 丛宇. 深厚松散地层泄压槽治理井筒破坏判据及其与地下水水位关系[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1578-1586. |
[4] | 闫佰忠, 孙剑, 王昕洲, 李晓萌, 孙丰博, 付丹平. 基于GIS-FAHP的石家庄市地下水源热泵适宜性分区[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1172-1181. |
[5] | 赵勇胜, 李彧. 黄原胶改性微米铁修复地下水中Cr(Ⅵ)污染的试验[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1224-1230. |
[6] | 闫佰忠, 孙丰博, 李晓萌, 王玉清, 范成博, 陈佳琦. 气候变化与人类活动对石家庄市藁城区地下水位埋深的影响分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 854-863. |
[7] | 骆奕杉, 李兆. 基于统计方法评价沁水盆地南部煤层气开采对地下水环境的影响[J]. 吉林大学学报(地球科学版), 2021, 51(2): 516-525. |
[8] | 朱君, 李婷, 陈超, 谢添, 张艾明. 近海核电厂核素地下水释放通量的模型计算方法[J]. 吉林大学学报(地球科学版), 2021, 51(1): 201-211. |
[9] | 宫志强, 田西昭, 刘伟江, 陈坚, 康阳, 杨光, 党志文. 抽出-处理技术抽出污染地下水——抽出效率及抽出终点[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1139-1150. |
[10] | 陈绪钰, 王东辉, 倪化勇, 李明辉, 田凯. 长江经济带上游地区丘陵城市工程建设适宜性评价——以泸州市规划中心城区为例[J]. 吉林大学学报(地球科学版), 2020, 50(1): 194-207. |
[11] | 闫佰忠, 孙剑, 王昕洲, 韩娜, 刘博. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版), 2020, 50(1): 208-216. |
[12] | 董林垚, 任洪玉, 雷俊山, 刘纪根. 地表暖化影响下温度示踪地下水流速方法[J]. 吉林大学学报(地球科学版), 2019, 49(3): 773-783. |
[13] | 付晓刚, 唐仲华, 刘彬涛, 蔺林林, 卜华, 闫佰忠. 基于模拟-优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3): 784-796. |
[14] | 虞未江, 贾超, 狄胜同, 李康, 袁涵. 基于综合权重和改进物元可拓评价模型的地下水水质评价[J]. 吉林大学学报(地球科学版), 2019, 49(2): 539-547. |
[15] | 骆祖江, 宁迪, 杜菁菁, 陆玮. 吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响[J]. 吉林大学学报(地球科学版), 2019, 49(2): 514-525. |
|