吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 854-863.doi: 10.13278/j.cnki.jjuese.20200147

• 地质工程与环境工程 • 上一篇    下一篇

气候变化与人类活动对石家庄市藁城区地下水位埋深的影响分析

闫佰忠1,2,3,4, 孙丰博1,2,3,4, 李晓萌1,2,3,4, 王玉清5, 范成博5, 陈佳琦1,2,3,4   

  1. 1. 河北地质大学水资源与环境学院, 石家庄 050031;
    2. 河北省高校生态环境地质应用技术研发中心, 石家庄 050031;
    3. 河北省水资源可持续利用与开发重点实验室, 石家庄 050031;
    4. 河北省水资源可持续利用与产业结构化协同创新中心, 石家庄 050031;
    5. 河北省地质资源环境监测与保护重点实验室, 石家庄 050031
  • 收稿日期:2020-06-21 出版日期:2021-05-26 发布日期:2021-06-07
  • 作者简介:闫佰忠(1988—),男,副教授,博士,主要从事水文地质、地热资源等方面的研究,E-mail:jluybz@126.com
  • 基金资助:
    国家自然科学基金项目(42002251),中国博士后基金面上项目(2018M631874),河北省自然科学基金项目(D2020403022),河北省高等学校科学技术研究项目(ZD2019082),河北省地质资源环境监测与保护重点实验室开发基金项目(JCYKT202001);河北省科技厅研发项目(18273627)

Impact of Climate Change and Human Activities on Groundwater Depth of Gaocheng District in Shijiazhuang City

Yan Baizhong1,2,3,4, Sun Fengbo1,2,3,4, Li Xiaomeng1,2,3,4, Wang Yuqing5, Fan Chengbo5, Chen Jiaqi1,2,3,4   

  1. 1. School of Water Resources & Environment, Hebei GEO University, Shijiazhuang 050031, China;
    2. Hebei Center for Ecological and Environmental Geology Research, Shijiazhuang 050031, China;
    3. Hebei Province Key Laboratory of Sustained Utilization & Development of Water Resources, Shijiazhuang 050031, China;
    4. Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Shijiazhuang 050031, China;
    5. Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Shijiazhuang 050031, China
  • Received:2020-06-21 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the National Natural Science Foundation of China (42002251),the China's Post-Doctoral Science Fund (2018M631874),the Natural Science Fund Project in Hebei Province (D2020403022,D2018403040),the Scientific Research Projects of the Higher University in Hebei (ZD2019082),the Key Laboratory of Geological Resources and Environmental Monitoring and Protection Fund of Hebei Province (JCYKT201901) and the Research and Development Project of Science and Technology Department of Hebei Province (18273627)

摘要: 为了探寻石家庄市藁城区地下水埋深动态变化规律,以藁城区2001—2018年的年降水量、地下水人工开采量等数据为基础,对藁城区地下水位埋深进行研究。首先采用P-Ⅲ型曲线法确定降水序列的丰、平、枯年份,分析不同降水量情况下地下水位埋深变化规律;其次,利用地下水开采潜力系数法和灰色关联度法对人工开采量和地下水位埋深的关系进行研究。结果表明:1)藁城区地下水位埋深在2001—2016年逐渐增大,在2016—2018年趋于减小,2016年为转折点;在空间上藁城区地下水位埋深呈现出北部埋深小、南部埋深大的特征,北部水位埋深较同期南部水位埋深要浅5~10 m。2)降水是驱动藁城区地下水位埋深变化的重要因素,枯水年水位埋深变幅在0.8~1.5 m之间,平水年水位埋深变幅在0.3~1.2 m之间,丰水年水位埋深变幅在0.3~1.1 m之间。主灌期(3—6月)的地下水位埋深增加速率均为cm/d级,非主灌期(7—10月)的地下水位埋深减少速率均为mm/d级。3)人工开采是驱动藁城区地下水位埋深变化的主导因素,其中农业开采量占人工开采量的80%。综上认为,藁城区一直处于严重超采状态,地下水累计超采量每增加1亿m3,地下水位埋深增加0.45 m。

关键词: 地下水位埋深, 气候变化, 人工开采, 石家庄市藁城区

Abstract: In order to explore the dynamic change law of groundwater depth in Gaocheng District in Shijiazhuang, based on the data of annual precipitation and artificial exploitation of groundwater from 2001 to 2018, we conducted a study on Gaocheng District. At first, the P-Ⅲ curve method is used to determine the high, normal and low flow years of precipitation by sequence, and the change law of groundwater depth under different precipitation conditions is analyzed; Secondly, the method of groundwater exploitation potential coefficient and the method of grey correlation degree are used to study the relationship volumes leves between the artificial exploitation volume and the depth of groundwater level. The results showed that: 1) The groundwater depth in Gaocheng District gradually increased from 2001 to 2016, decreased from 2016 to 2018, and 2016 was the turning point. Spatially, it showed the characteristics of smaller depth in the north and larger depth in the south in Gaocheng District, and the water level in the north was 5-10 m lower than that in the south in the same period. 2) Precipitation is an important factor to drive the change of groundwater depth in Gaocheng District. The variation range of groundwater level is 0.8-1.5 m in low flowyear, 0.3-1.2 m in normal flow year, and 0.3-1.1 m in high flow year. The increase rate of groundwater depth in the main irrigation period (March-June) is cm/d, and the decrease rate of groundwater depth in the non-main irrigation period (July-October) is mm/d. 3) Artificial exploitation is the main factor to drive the change of groundwater depth in Gaocheng District, while agricultural exploitation accounts for 80% of the total. According to the method of potential coefficient of groundwater exploitation, Gaocheng District has been under a condition of serious over exploitation since 2001. For every 100 million m3 of accumulated overexploitation of groundwater, the buried depth of groundwater increases by 0.45 m.

Key words: groundwater depth, climate change, artificial mining, Gaocheng District in Shijiazhuang City

中图分类号: 

  • P641
[1] 孟素花,费宇红,张兆吉,等.华北平原地下水脆弱性评价[J].中国地质,2011,38(6):1607-1613. Meng Suhua, Fei Yuhong, Zhang Zhaoji, et al. Groundwater Vulnerability Assessment of North China Plain[J]. Geology in China, 2011, 38(6):1607-1613.
[2] 张光辉,费宇红,刘克岩,等.南水北调中线石家庄受水区地下水修复潜力及水位变化[J].地质通报,2007,26(5):583-589. Zhang Ganghui, Fei Yuhong, Liu Keyan, et al. Groundwater Potential Recovery and Water Level Variation in the Shijiazhuang Water-Receiving Area at the Central Line of the South-to-North Water Transfer Project, China[J]. Geological Bulletin of China, 2007,26(5):583-589.
[3] Wang W K, Zhang Z Y, Duan L, et al. Response of the Groundwater System in the Guanzhong Basin (Central China) to Climate Change and Human Activities[J]. Hydrogeology Journal, 2018, 26(5):1429-1441.
[4] Zhang Y, Wang J C, Jing J H, et al. Response of Groundwater to Climate Change Under Extreme Climate Conditions in North China Plain[J]. Journal of Earth Science, 2014, 25(3): 612-618.
[5] Fan J H, Liu Q, Zhang Y, et al. Dynamic Variations and Influencing Factors of Groundwater Levels in Lhasa City[J]. Wuhan University Journal of Natural Sciences,2005(4):665-673.
[6] Patil N S, Chetan N L, Nataraja M, et al. Climate Change Scenarios and Its Effect on Groundwater Level in the Hiranyakeshi Watershed[J]. Groundwater for Sustainable Development, 2020, 10: 100323.
[7] Lasagna M, Mancini S, Luca D A. Groundwater Hydrodynamic Behaviors Based on Water Table Levels to Identify Natural and Anthropic Controlling Factors in the Piedmont Plain (Italy)[J]. Science of the Total Environment, 2020, 716:137051.
[8] 冯慧敏.石家庄平原区地下水流场演变特征与尺度效应[D].北京:中国地质科学院,2015. Feng Huimin. Groundwater Flow Field Evolution Characteristic and Size Effect of Shijiazhuang Plain[D]. Beijing:Chinese Academy of Geological Sciences, 2015.
[9] 许月卿.京津以南河北平原地下水位下降驱动因子的定量评估[J].地理科学进展,2003,22(5):490-498. Xu Yueqing. Evaluation of Groundwater Level Drawdown Driving Forces in the Hebei Plain to the South of Beijing and Tianjin[J]. Progress in Geography, 2003, 22(5):490-498.
[10] 史入宇,崔亚莉,赵婕,等.滹沱河地区地下水适宜水位研究[J].水文地质工程地质,2013,40(2):36-41. Shi Ruyu, Cui Yali, Zhao Jie, et al.A Study of the Suitable Groundwater Level of the Hutuo River Area[J]. Hydrogeology & Engineering Geology, 2013, 40(2):36-41.
[11] 李雪,叶思源,宋凡,等.京津冀平原区地下水水位变化主导因素的定量识别研究[J].水文,2018,38(1):21-27. Li Xue, Ye Siyuan, Song Fan, et al. Quantitative Identification of Major Factors Affecting Groundwater Change in Beijing-Tianjin-Hebei Plain[J]. Journal of China Hydrology, 2018, 38(1):21-27.
[12] 赵自阳,李王成,王霞,等.基于主成分分析和因子分析的宁夏水资源承载力研究[J].水文,2017,37(2):64-72. Zhao Ziyang, Li Wangcheng, Wang Xia, et al. Study on Water Resources Carrying Capacity in Ningxia Based on Principal Component Analysis and Factor Analysis[J]. Journal of China Hydrology, 2017, 37(2):64-72.
[13] 闫佰忠,孙剑,王昕洲,等.基于多变量LSTM神经网络的地下水水位预测[J].吉林大学学报(地球科学版),2020,50(1):208-216. Yan Baizhong,Sun Jian, Wang Xinzhou,et al. Multivariable LSTM Neural Network Model for Groundwater Levels Prediction[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(1):208-216.
[14] 王电龙,冯慧敏,田言亮,等.降水和开采变化对滹滏农业区地下水流场影响特征与机制[J].海河水利,2017(2):20-24. Wang Dianlong, Feng Huimin, Tian Yanliang, et al. Characteristics and Mechanism of Precipitation and Groundwater Exploitation Influence on Groundwater Flow Filed in Agricultural Field Hufu[J]. Haihe Water Resources, 2017(2):20-24.
[15] 石建省,王昭,张兆吉,等.华北平原深层地下水超采程度计算与分析[J].地学前缘,2010,17(6):215-220. Shi Jiansheng, Wang Zhao, Zhang Zhaoji, et al. Assessment of Over-Exploitation of Deep Groundwater in the North China Plain[J]. Earth Science Frontiers,2010,17(6):215-220.
[16] 中国地质调查局.GWI-D4地下水潜力评价技术要求[M].北京:地质出版社,2004:57-62. China Geological Survey.GWI-D4 Groundwater Potential Evaluation Technical Requirements[M]. Beijing:Geological Publishing House,2004:57-62.
[17] 张兆吉,费宇红.华北平原地下水可持续利用调查评价[M].北京:地质出版社,2009:361. Zhang Zhaoji,Fei Yuhong. Investigation and Evaluation on Sustainable Utilization of Groundwater in the North China Plain[M]. Beijing:Geological Publishing House,2009:361.
[18] 赵晓芬.灰色系统理论概述[J].吉林省教育学院学报,2011,27(3):152-154. Zhao Xiaofen. Summary of Grey System Theory[J]. Journal of Educational Institute of Jilin Province,2011,27(3):152-154.
[19] 李宝玉.吉林市区地下水位动态变化研究[D].长春:吉林大学,2020. Li Baoyu. Study on Dynamic Change of Groundwater Level in Jilin City[D].Changchun:Jilin University, 2020.
[1] 崔赢, 沈宇鹏, 张中琼. 环境因素对兴-贝型多年冻土分布与发育的影响[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1427-1440.
[2] 王利花, 周云轩. 大通站水沙关系演变驱动因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 226-233.
[3] 李贶家, 顾延生, 刘红叶. 豫北平原全新世孢粉记录气候变化与古文化演替[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1449-1457.
[4] 于磊,杨井泉,徐丽梅,胡广鑫,胡红,张涛,高明杰,李子轩. 气候变化背景下海河流域干旱特征及趋势[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1615-1624.
[5] 谭志海,黄春长,庞奖励,丁敏. 渭河流域全新世以来野火历史与人类土地利用的炭屑记录[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1297-1306.
[6] 高文,贾大成,李桐林,王泽光,姜琦刚,刘春茹,张潇,姜涛. 松嫩平原东部中、晚更新世地层界限:光释光年龄及元素变化[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1889-1894.
[7] 刘维明,杨胜利,方小敏. 川西高原黄土记录的末次冰期气候变化[J]. 吉林大学学报(地球科学版), 2013, 43(3): 974-982.
[8] 崔瀚文,姜琦刚,邢宇,徐驰,林楠. 32 a来气候扰动下中国沙质荒漠化动态变化[J]. 吉林大学学报(地球科学版), 2013, 43(2): 582-591.
[9] 黄昌庆, Liu Kambiu, 冯兆东, 冉敏, 杨奇丽, 张晓森. 哈萨克斯坦Tramplin剖面孢粉记录的MIS3a环境变化[J]. 吉林大学学报(地球科学版), 2013, 43(1): 149-154.
[10] 李秉成. 10 000 aB.P.关中蓝田的植被和气候[J]. J4, 2010, 40(1): 109-113.
[11] 邵兆刚, 孟宪刚, 朱大岗, 杨朝斌, 雷伟志, 王津, 韩建恩, 余佳, 孟庆伟, 吕荣平, 钱程. 从能量输入角度讨论高原隆升的环境效应[J]. J4, 2009, 39(3): 514-520.
[12] 张继承,姜琦刚,李远华,王利花. 近50年来柴达木盆地湿地变迁及其气候背景分析[J]. J4, 2007, 37(4): 752-0758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[3] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[4] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[5] 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,肖丽华,王粤川. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. J4, 2006, 36(02): 227 -0233 .
[6] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[7] 常秋玲,卢欣祥,刘东华,李明立. 东秦岭五朵山花岗岩体及金矿关系探讨[J]. J4, 2006, 36(03): 319 -325 .
[8] 马艳梅,崔启良,周强,黄伟军,刘冶,彭刚,邹广田. 橄榄石原位高温拉曼光谱研究[J]. J4, 2006, 36(03): 342 -345 .
[9] 殷 文,印兴耀, 张繁昌. 基于并行遗传算法的地震属性优化研究[J]. J4, 2005, 35(05): 672 -676 .
[10] 魏 喜,邓晋福,陈亦寒. 南海盆地中生代海相沉积地层分布特征及勘探潜力分析[J]. J4, 2005, 35(04): 456 -0461 .