吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1182-1192.doi: 10.13278/j.cnki.jjuese.20200047
程蕊1,2,3,4, 朱琳1,2,3,4, 周佳慧1,2,3,4, 郭高轩5, 郭琳1,2,3,4, 李蕙君1,2,3,4, 陈蓓蓓1,2,3,4
Cheng Rui1,2,3,4, Zhu Lin1,2,3,4, Zhou Jiahui1,2,3,4, Guo Gaoxuan5, Guo Lin1,2,3,4, Li Huijun1,2,3,4, Chen Beibei1,2,3,4
摘要: 为了研究地面沉降的时空分布模式、机理机制,选择北京典型沉降区——潮白河冲洪积扇为研究区,采用PS-InSAR技术、莫兰指数及地理探测器,分析了研究区地面沉降的空间异质性特征,探测了不同特征下的地面沉降的主要驱动因素。结果表明:2017-01—2019-01研究区内地面沉降时空分布特征以一般沉降为主,沉降速率为[-133,3] mm/a,最大累积沉降量为261 mm,呈北部轻微、中部较严重、南部较轻的分布状态,其中,严重、极严重等级地面沉降主要分布在中游顺义后沙峪东部等地区及中下游交界地带的潞城镇;不同地区地面沉降呈现不同的空间异质性特征,即不均匀地面沉降分布特征明显,中游、下游均表现为低—低集聚;不同分布特征下地面沉降主要驱动因素不同,中游地区主要驱动因素为第二承压水水位变化和可压缩层厚度,下游主要驱动因素为浅层地下水水位变化和第一承压水水位变化。莫兰指数能够有效分析地面沉降空间异质性,识别集聚特征;地理探测器可以探明沉降空间异质性成因,获得其主要驱动因素。
中图分类号:
[1] Chen M, Tomás R, Li Z, et al. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry[J]. Remote Sensing, 2016, 8(6):468. [2] 葛大庆, 张玲, 王艳, 等. 上海地铁10号线建设与运营过程中地面沉降效应的高分辨率InSAR监测及分析[J]. 上海国土资源, 2014(4):62-67. Ge Daqing, Zhang Ling, Wang Yan, et al. Monitoring Subsidence on Shanghai Metro Line 10 During Construction and Operation Using High-Resolution InSAR[J]. Shanghai Land and Resources, 2014(4):62-67. [3] 赵超英, 张勤, 丁晓利, 等. 基于InSAR的西安地面沉降与地裂缝发育特征研究[J]. 工程地质学报, 2009,17(3):103-107. Zhao Chaoying, Zhang Qin, Ding Xiaoli, et al. InSAR Based Evaluation of Land Subsidence and Ground Fissure Evolution at Xi'an[J]. Journal of Engineering Geology, 2009, 17(3):103-107. [4] Zhu L, Gong H L, Teatini P, et al. Land Subsidence due to Groundwater Withdrawal in the Northern Beijing Plain, China[J]. Engineering Geology, 2015, 193:243-255. [5] 张永红, 吴宏安, 康永辉. 京津冀地区1992-2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016, 45(9):1050-1058. Zhang Yonghong, Wu Hong'an, Kang Yonghui. Ground Subsidence over Beijing-Tianjin-Hebei Region During Three Periods of 1992 to 2014 Monitored by Interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1050-1058. [6] Galloway D L, Leake S A. Regional Land Subsidence Caused by the Compaction of Susceptible Aquifer Systems Accompanying Groundwater Extraction[M].[L.n.]:McGraw-Hill Education,2016. [7] 陈蓓蓓, 宫辉力, 李小娟, 等. 北京地下水系统演化与地面沉降过程[J]. 吉林大学学报(地球科学版), 2012(增刊1):373-379. Chen Beibei, Gong Huili, Li Xiaojuan, et al. Groundwater System Evolution and Land Subsidence Process in Beijing[J]. Journal of Jilin University(Earth Science Edition), 2012(Sup.1):373-379. [8] Chen B B, Gong H L, Li X J, et al. Spatial-Temporal Characteristics of Land Subsidence Corresponding to Dynamic Groundwater Funnel in Beijing Municipality, China[J]. Chinese Geographical Science, 2011, 21(6):753-764. [9] 刘凯斯, 宫辉力, 陈蓓蓓. 基于地面沉降监测的地铁运营危险性评价:以北京地铁6号线为例[J]. 地理与地理信息科学, 2018, 34(3):68-73. Liu Kaisi, Gong Huili, Chen Beibei. Assessing the Subway Operational Risk Based on Land Subsidence Monitoring:Taking Beijing Metro Line 6 as an Example[J]. Geography and Geographic Information Science, 2018,34(3):68-73. [10] 许军强, 马涛, 卢意恺, 等. 基于SBAS-InSAR技术的豫北平原地面沉降监测[J]. 吉林大学学报(地球科学版), 2019, 49(4):1182-1191. Xu Junqiang, Ma Tao, Lu Yikai, et al. Land Subsidence Monitoring in North Henan Plain Based on SBAS-InSAR Technology[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4):1182-1191. [11] 周超凡, 宫辉力, 陈蓓蓓, 等. 北京地面沉降时空分布特征研究[J]. 地球信息科学学报, 2017, 19(2):205-215. Zhou Chaofan, Gong Huili, Chen Beibei,et al. Study of Temporal and Spatial Characteristics of Land Subsidence in Beijing[J]. Journal of Earth Information Science, 2017,19(2):205-215. [12] Guo L, Gong H L, Zhu F, et al. Analysis of the Spatiotemporal Variation in Land Subsidence on the Beijing Plain, China[J]. Remote Sensing, 2019, 11:1170. [13] 王洁, 宫辉力, 陈蓓蓓,等. 基于Morlet小波技术的北京平原地面沉降周期性分析[J]. 吉林大学学报(地球科学版), 2018, 48(3):836-845. Wang Jie, Gong Huili, Chen Beibei, et al. Periodical Analysis of Land Subsidence in Beijing Plain Based on Morlet Wavelet Technology[J]. Journal of Jilin University (Earth Science Edition), 2018,48(3):836-845. [14] 颉晋荣, 宫辉力, 陈蓓蓓,等. 基于马尔科夫和信息熵的北京平原地面沉降空间结构演化分析[J]. 首都师范大学学报(自然科学版), 2015, 36(6):87-91. Xie Jinrong, Gong Huili, Chen Beibei, et al. Analyze About the Evolution of Deformation Structure in Beijing Plain[J]. Journal of Capital Normal University (Natural Science Edition), 2015, 36(6):87-91. [15] 何庆成, 刘文波, 李志明. 华北平原地面沉降调查与监测[J]. 高校地质学报, 2006, 12(2):195-209. He Qingcheng, Liu Wenbo, Li Zhiming.Land Subsidence Survey and Monitoring in the North China Plain[J]. Geological Journal of China Universities, 2006, 12(2):195-209. [16] 宫辉力, 张有全, 李小娟, 等. 基于永久散射体雷达干涉测量技术的北京市地面沉降研究[J]. 自然科学进展, 2009, 19(11):1261-1266. Gong Huili, Zhang Youquan, Li Xiaojuan, et al. Land Subsidence Research in Beijing Based on Radar Interferometry of Permanent Scatterers[J]. Progress in Natural Science, 2009, 19(11):1261-1266. [17] Dang V K, Doubre C, Weber C, et al. Recent Land Subsidence Caused by the Rapid Urban Development in the Hanoi Urban Region (Vietnam) Using ALOS InSAR Sata[J]. Natural Hazards & Earth System Sciences Discussions, 2014, 14:657-674. [18] Castellazzi P, Martel R, Rivera A, et al. Groundwater Depletion in Central Mexico:Use of GRACE and InSAR to Support Water Resources Management[J]. Water Resources Research, 2016, 52(8):5985-6003. [19] 何亚乐, 朱琳, 宫辉力,等. TerraSAR的首都机场形变特征分析[J]. 测绘科学, 2016, 41(12):14-18. He Yale, Zhu Lin, Gong Huili, et al. Analysis of Land Subsidence Features Based on TerraSAR Images in Beijing-Capital International Airport[J]. Science of Surveying and Mapping, 2016, 41(12):14-18. [20] Zhou C F, Gong H L, Chen B B, et al. Quantifying the Contribution of Multiple Factors to Land Subsidence in the Beijing Plain, China with Machine Learning Technology[J]. Geomorphology, 2019, 335:48-61. [21] Zhu L, Franceschini A, Gong H, et al. The 3-D Facies and Geomechanical Modeling of Land Subsidence in the Chaobai Plain, Beijing[J]. Water Resources Research, 2020, 56(3). Doi:10.1029/2019WR027026. [22] 郭高轩, 侯泉林, 许亮, 等.北京潮白河冲洪积扇地下水水化学的分层分带特征[J]. 地球学报, 2014, 35(2):204-210. Guo Gaoxuan, Hou Quanlin, Xu Liang, et al.Delamination and Zoning Characteristics of Quaternary Groundwater in Chaobai Alluvial-Proluvial Fan, Beijing, Based on Hydrochemical Analysis[J]. Acta Geoscientica Sinica, 2014,35(2):204-210. [23] 蔡向民, 郭高轩, 栾英波, 等.北京山前平原区第四系三维结构调查方法研究[J]. 地质学报, 2009, 83(7):1047-1057. Cai Xiangmin, Guo Gaoxuan, Luan Yingbo,et al. Quaternary Geological Features of Beijing Piedmont Plain Using 3-D Structural Method[J]. Acta Geologica Sinica, 2009,83(7):1047-1057. [24] 刘予, 叶超, 贾三满. 北京市平原地面沉降区含水岩组和可压缩层划分[J]. 城市地质, 2007, 2(1):10-15. Liu Yu,Ye Chao, Jia Sanman. Division of Water-Bearing Zones and Compressible Layers in Beijing's Land Subsidence Areas[J]. Urban Geology, 2007, 2(1):10-15. [25] Chen B B, Gong H L, Lei K C, et al. Land Subsidence Lagging Quantification in the Main Exploration Aquifer Layers in Beijing Plain, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,75:54-67. [26] Haghighi M H,Motagh M. Ground Surface Response to Continuous Compaction of Aquifer System in Tehran, Iran:Results from a Long-Term Multi-Sensor InSAR Analysis[J]. Remote Sensing of Environment,2019,221:534-550. [27] Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. Proc Igarss,2001,39(1):8-20. [28] Gao M L, Gong H L, Li X J, et al. Land Subsidence and Ground Fissures in Beijing Capital International Airport (BCIA):Evidence from Quasi-PS InSAR Analysis[J]. Remote Sensing, 2019, 11(12):1466. [29] Moran P A P. The Interpretation of Statistical Maps[J]. Journal of the Royal Statistical Society:Series B, 1948, 10(2):243-251. [30] Anselin L. 空间关联的局部指示器:LISA[J]. 地理分析, 1995, 27(2):93-115. Anselin L. Local Indicator of Spatial Association:LISA[J]. Geographic Analysis,1995, 27(2):93-115. [31] Wang J F, Li X H, Christakos G, et al. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-127. [32] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134. Wang Jinfeng, Xu Chengdong. Geodetector:Principle and Prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134. [33] 周亮, 周成虎, 杨帆, 等. 2000-2011年中国PM2.5时空演化特征及驱动因素解析[J].地理学报,2017,72(11):2079-2092. Zhou Liang, Zhou Chenghu, Yang Fan,et al. Spatio-Temporal Evolution and the Influencing Factors of PM2.5 in China Between 2000 and 2011[J]. Acta Geographica Sinica, 2017,72(11):2079-2092. [34] 石鹏远, 余洁, 朱琳, 等. 应用地理探测器改进地面沉降危险性评估模型的研究[J]. 中国地质灾害与防治学报, 2019, 30(3):101-112. Shi Pengyuan, Yu Jie, Zhu Lin, et al. Hazard Assessment Model of Land Subsidence Based on Geographical Detector[J]. The Chinese Journal of Geological Hazard and Control, 2019,30(3):101-112. [35] 李佳洺, 陆大道, 徐成东,等. 胡焕庸线两侧人口的空间分异性及其变化[J]. 地理学报, 2017, 72(1):148-160. Li Jiaming, Lu Dadao, Xu Chengdong, et al. Spatial Heterogeneity and Its Changes of Population on the Two Sides of Hu Line[J]. Acta Geographica Sinica, 2017, 72(1):148-160. [36] 地质灾害危险性评估规范:DZT 0286-2015[S]. 北京:地质出版社, 2015. Specification of Risk Assessment for Geological Hazard:DZT 0286-2015[S]. Beijing:Geological Publishing House, 2015. |
[1] | 许军强, 马涛, 卢意恺, 白潍铭, 赵帅. 基于SBAS-InSAR技术的豫北平原地面沉降监测[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1182-1191. |
[2] | 骆祖江, 宁迪, 杜菁菁, 陆玮. 吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响[J]. 吉林大学学报(地球科学版), 2019, 49(2): 514-525. |
[3] | 王洁, 宫辉力, 陈蓓蓓, 高明亮, 周超凡, 梁悦, 陈文锋. 基于Morlet小波技术的北京平原地面沉降周期性分析[J]. 吉林大学学报(地球科学版), 2018, 48(3): 836-845. |
[4] | 周超凡, 宫辉力, 陈蓓蓓, 贾煦, 朱锋, 郭琳. 利用数据场模型评价北京地面沉降交通载荷程度[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1511-1520. |
[5] | 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789. |
[6] | 付延玲,金玮泽,陈兴贤,谈金忠. 高层建筑荷载引发地面沉降与隆起变形三维数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1587-1594. |
[7] | 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965. |
[8] | 李文运, 崔亚莉, 苏晨, 张伟, 邵景力. 天津市地下水流-地面沉降耦合模型[J]. J4, 2012, 42(3): 805-813. |
[9] | 付延玲. 基于地面沉降控制的区域性松散沉积层地下水可采资源规划评价[J]. J4, 2012, 42(2): 476-484. |
[10] | 骆祖江, 曾峰, 李颖. 地下水开采与地面沉降控制三维全耦合模型研究[J]. J4, 2009, 39(6): 1080-1088. |
[11] | 于 军,苏小四,朱 琳,段福洲,高 立,吴曙亮. 苏锡常地区地面沉降地质结构三维可视化模型虚拟现实系统研究[J]. J4, 2007, 37(2): 393-399. |
|