吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (5): 1626-1648.doi: 10.13278/j.cnki.jjuese.20210397

• 地质与资源 • 上一篇    下一篇

黑龙江省四平山金矿床成矿作用及矿床成因:来自矿床地质、地球化学、锆石U-Pb年代学及H-O-S同位素的制约

王 硕1,孙丰月2,王 冠3,刘 凯4,刘云华1   

  1. 1.长安大学地球科学与资源学院,西安 710054 

    2.吉林大学地球科学学院,长春 130061 

    3.黑龙江科技大学矿业工程学院,哈尔滨 150022 

    4.中国地质调查局沈阳地质调查中心,沈阳 110034

  • 收稿日期:2021-12-04 出版日期:2022-09-15 发布日期:2022-10-10

Mineralization and Genesis of Sipingshan Gold Deposit, Heilongjiang, China: Evidence from Ore Deposit Geology, Geochemistry, Zircon U-Pb Ages, and H-O-S Isotopes

Wang Shuo1,Sun Fengyue2,Wang Guan3, Liu Kai4, Liu Yunhua1   

  1. 1. School of Earth Sciences and Resource, Chang’an University, Xi’an 710054, China 

    2. College of Earth Sciences, Jilin University, Changchun 130061, China 

    3. School of Mining Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China  4. Shenyang Center, China Geological Survey, Shenyang 110034, China

  • Received:2021-12-04 Online:2022-09-15 Published:2022-10-10

摘要: 四平山金矿床位于我国黑龙江省东部的完达山陆缘增生带内,矿体主要赋存于下白垩统四平山组,表现出明显的两阶段成矿作用特征。为进一步确定四平山金矿床的成矿作用及矿床成因,本次研究对其成矿地质特征、地球化学、成矿年代学及成矿物质来源进行了分析。地球化学分析结果表明:成矿花岗斑岩为具有高SiO2(70.07%~72.93%)、(K2O+Na2O)(7.17%~8.42%)质量分数和右倾“海鸥型”稀土配分型式特征的A型花岗岩;含矿层状硅质岩中,Al/(Fe+Al+Mn)<0.32、Fe/Ti >20、(Fe+Mn)/Ti>20,并具有较高Fe2O3(0.18%~1.79%)、FeO(0.17%~0.96%)、MnO(0.03%~0.12%)、TiO2(0.03%~0.04%)、Al2O3(0.30%~2.79%)和(K2O+Na2O)(0.07%~1.76%)质量分数,指示四平山金矿床形成于活动大陆边缘构造背景下与岩浆活动有关的热水沉积环境。四平山金矿床成矿花岗斑岩锆石U-Pb年龄为(113.5±0.7)Ma。H、O、S同位素分析结果(δD=-182.3‰~-84.0‰、δ18OV-SMOW=6.5‰~14.3‰、δ34S=-12.4‰~29.7‰)显示,成矿流体主要为大气降水,成矿物质具有以地层为主的多来源特征。综上,四平山金矿床为形成于燕山晚期活动大陆边缘构造背景下的热水沉积型矿床,太平洋板块持续俯冲造成了区域上大规模的拆沉作用,导致区域构造背景由挤压向伸展发生转换,此时形成的花岗斑岩岩浆运移至地壳浅部岩浆房加热上覆地层,在地壳浅部形成了温度与压力梯度带,促使地表的大气降水沿裂隙进入地层后形成流体循环系统,并不断萃取地层中的Au元素形成含矿流体。在成矿早阶段,当压力驱动含矿流体喷出地表后与地表水相遇快速冷却,成矿物质快速沉淀,形成含矿层状硅质岩和硅质胶结砾岩,并通过交代下伏流纹斑岩形成层状、似层状矿体;在成矿晚阶段,随着岩浆房提供的热动力减弱,含矿流体滞留在裂隙通道中或穿切进入早期固结的含矿层裂隙中,沉淀形成脉状-网脉状矿体。

关键词: 四平山金矿床, 成矿作用, 成矿时代, 地球化学, 稳定同位素, 热水沉积

Abstract: Sipingshan gold deposit is located in the Wandashan epicontinental accretional terrane in eastern Heilongjiang, China. The ore bodies are mainly hosted in the Lower Cretaceous Sipingshan Formation, showing obvious two-stage mineralization. To further determine the mineralization and genesis of the deposit, this study analyzes its metallogenic geological characteristics, metallogenic chronology and source of metallogenic materials. The samples from the ore-related granite porphyry have relatively high SiO2 (70.07%-72.93%) and (K2O+Na2O)(7.17%-8.42%), which belong to A-type granite. The ore-bearing siliceous rocks are characterized by Al/(Fe+Al+Mn)<0.32, Fe/Ti>20, (Fe+Mn)/Ti >20, Fe2O3 (0.18%-1.79%), FeO(0.17%-0.96%), MnO (0.03%-0.12%), TiO2 (0.03%-0.04%), Al2O3 (0.30%-2.79%), (K2O+Na2O)(0.07%-1.76%), indicating that Sipingshan gold deposit is formed in a hydrothermal depositional environment related to magmatic activity in the tectonic setting of active continental margins. The granite porphyry is identified as the parent rock of Sipingshan gold deposit, with a U-Pb zircon age of (113.5±0.7) Ma. The H(δD=-182.3‰--84.0‰),O(δ18OV-SMOW=6.5‰-14.3‰), and S(δ34S=-12.4‰-29.7‰) isotopic results indicate that the ore-forming fluid is mainly atmospheric precipitation, and the ore-forming materials have stratigraphically dominated multi-source features. To sum up, Sipingshan gold deposit is a hydrothermal sedimentary deposit formed in the Late Yanshanian active continental margin tectonic background. The continuous subduction of the Pacific plate caused large-scale delamination, resulting in a transition from extrusion to extension. This granite porphyry magma formed at this period migrated to the shallow crustal magma chamber to heat the overlying stratum, and formed a temperature and pressure gradient zone in the shallow crust, which prompted the atmospheric precipitation on the surface to enter the stratum along the fissures to form a fluid circulation system, and continuously extract Au elements in the formation to form ore-bearing fluids. In the early stage,when the pressure drived the ore-bearing fluids to be ejected from the surface, it encountered the surface water and cooled rapidly, and the ore-forming materials precipitated rapidly, forming the  layered ore-bearing siliceous rocks and siliceous cemented conglomerates, which formed layered orebodies by metasomatism of the underlying rhyolite porphyry. This process was weakened with the thermal power provided by the magma chamber dying down. In the later stage, the ore-bearing fluids stayed in the fissure channels or penetrated into the fissures of the early consolidated ore-bearing layer, then precipitated to form vein-like and reticulated-vein-like ore bodies.

Key words: Sipingshan gold deposit, mineralization; geochronology, geochemistry, stable isotopes, exhalative sedimentary

中图分类号: 

  • P618.51
[1] 唐名鹰, 朱德全, 丁正江, 陈建, 王炜晓, 董振昆, 高振华, 苗晓军, 郑成龙. 柴北缘阿日特克山斑岩型铜钼矿床流体包裹体、稳定同位素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1525-1539.
[2] 王琳琳, 霍 亮, 王 莹 . 吉林延边小西南岔铜(金)矿床早白垩世中—酸性岩浆岩年代学、地球化学及其成因探讨[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1658-1674.
[3] 李梦玲, 孙珍军, 于赫楠, 付 浩, 胡 涛. 秦皇岛茹各庄火山碎屑岩地球化学、锆石U-Pb定年、Hf同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1688-1706.
[4] 丁清峰, 吴睿哲, 张强, 周轩. 青海东昆仑洪水河铁矿床新元古代含铁建造铁同位素特征及其成因意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1497-1511.
[5] 赵拓飞, 林博磊, 陈昌昕, 王超, 李良.

青海东昆仑西段阿克楚克赛地区新元古代片麻状黑云二长花岗岩成因及其地质意义:地球化学、年代学及Hf同位素制约 [J]. 吉林大学学报(地球科学版), 2022, 52(5): 1540-1557.

[6] 张宇婷, 孙丰月, 李予晋, 叶丽娜, 刘金龙, 苏 蓉. 吉南中侏罗世花岗闪长岩的锆石U-Pb年龄、地球化学及Hf同位素组成[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1675-1687.
[7] 钟佳, 王岩泉, . 琼东南盆地松南低凸起花岗岩年代学、地球化学特征及构造环境[J]. 吉林大学学报(地球科学版), 2022, 52(1): 134-.
[8] 何锦, 郑一迪, 邓启军 , 何雪琴. 我国北方新生代玄武岩地下水化学特征及其成因:以河北省张北县为例[J]. 吉林大学学报(地球科学版), 2022, 52(1): 171-.
[9] 殷 越1, 2, 贾鹏飞3, 黄志龙2, 吴红烛4, 金 希4, 刘国杰4. 三塘湖盆地马东地区卡拉岗组烃源岩特征与致密油意义[J]. 吉林大学学报(地球科学版), 2022, 52(1): 26-.
[10] 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769.
[11] 刘建民, 赵国春, 徐刚, 邱海成, 李建锋, 肖昌浩, 沙德铭, 刘福兴, 毕广源, 房兴, 张家奇, 郭祺, 于婳. 辽东半岛金矿成矿作用与深部资源勘查[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1613-1635.
[12] 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852.
[13] 张贵山, 邱红信, 温汉捷, 彭仁, 孟乾坤. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740-1752.
[14] 李天军, 黄志龙, 王瑞, 苟红光, 张品, 殷越. 银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2021, 51(4): 957-972.
[15] 史冬岩, 张坤, 张玉鹏, 高勇, 唐伟, 吕明奇. 黑龙江省浅覆盖区地物化特征与找矿标志——以黑河市340高地金矿化区为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1042-1053.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!