吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (3): 970-986.doi: 10.13278/j.cnki.jjuese.20230229

• 地球探测与信息技术 • 上一篇    下一篇

基于改进U-Net的微地震事件识别方法

董春峰1, 2,张岩2, 3,刘小秋3,董宏丽2   

  1. 1.东北石油大学电气信息工程学院,黑龙江大庆163318
    2.东北石油大学人工智能能源研究院,黑龙江大庆163318
    3.东北石油大学计算机与信息技术学院,黑龙江大庆163318
  • 出版日期:2025-05-26 发布日期:2025-06-06
  • 通讯作者: 张岩(1980-),男,副教授,博士生导师,主要从事地震信号处理与反演相关方面的研究,E-mail: zhang-yan1999@nepu.edu.cn
  • 作者简介:董春峰(1998—),男,硕士研究生,主要从事微地震相关方面的研究,E-mail: 2649215271@qq.com
  • 基金资助:
    国家自然科学基金项目(U21A2019);黑龙江省科技创新基地奖励项目(JD24A009)

Microseismic Event Recognition Method Based on Improved U-Net

Dong Chunfeng1, 2, Zhang Yan2, 3, Liu Xiaoqiu3, Dong Hongli2   

  1. 1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
    2. Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
    3. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Online:2025-05-26 Published:2025-06-06
  • Supported by:
    Supported by the National Natural Science Foundation of China (U21A2019) and the Award Project of Heilongjiang Province Science and Technology Innovation Base (JD24A009) 

摘要: 微地震事件识别是水力压裂微地震监测数据处理的一个关键环节,当前基于深度学习的微地震事件识别方法在有效事件特征提取和抗噪方面存在一定的局限,无法满足后续微地震震源定位、反演等工作的要求。本文提出基于改进U-Net的微地震事件识别方法,该方法在U-Net下采样过程中引入残差收缩模块,通过残差块实现网络结构的跨层连接以减少模型训练时特征信息的损失,结合软阈值收缩技术削弱微地震数据中噪声特征的干扰,增强模型的抗噪能力;在上采样过程中引入注意力门机制,通过门控信号对提取到的微地震数据特征向量进行加权,使模型重点关注数据中含有微地震事件的区域,提高模型有效特征的提取能力与识别精度。合成和实际微地震数据实验结果表明,本文方法可充分提取有效微地震事件特征,相比于传统卷积神经网和残差网络能更准确地识别出微地震事件,测试集准确率分别提高6.28%、3.70%,尤其对能量弱的微地震信号的识别精度高于同类网络模型,并具有较好的抗噪与泛化能力。


关键词: 微地震事件识别, U-Net, 残差收缩模块, 注意力门, 信号处理

Abstract:  Microseismic event recognition is a key part of the data processing of hydraulic fracturing microseismic monitoring, but there are some limitations in effective event feature extraction and noise resistance for current microseismic event recognition methods based on deep learning, which cannot meet the requirements of subsequent microseismic source localization and inversion. In this paper, a microseismic event recognition method based on an improved U-Net model is proposed. In this method, residual shrinkage modules are introduced during the downsampling process of U-Net. The residual blocks are used to implement shortcut connections of the network structure to reduce the loss of feature information during model training, and the soft thresholding shrinkage technology is combined to weaken the interference of noise features in microseismic data and enhance model noise resistance. The attention gate mechanism is introduced during the upsampling process to weight the extracted microseismic data feature vector by gating signal, so that the model focuses on the area of the data containing microseismic events, thereby improving the extraction ability and identification accuracy of the model’s effective feature. The experimental results of synthetic and actual microseismic data show that the proposed method can adequately extract the characteristics of effective microseismic events. Compared with the traditional convolutional neural networks and residual networks, it  can recognize microseismic events more accurately,  the accuracy of test datasets is improved by 6.28% and 3.70% respectively.   Especially for  the  recognition accuracy of  microseismic signals with weak energy,it is higher than that of similar network models. And it has better noise resistance and generalization ability.


Key words: microseismic event recognition, U-Net, residual shrinking module, attention gate, signal processing

中图分类号: 

  • P631.4
[1] 高康哲, 王凤艳, 刘子维, 王明常. 基于改进U-Net的遥感图像语义分割[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1752-1763.
[2] 王婷婷, 孙振轩, 戴金龙, 姜基露, 赵万春.

松辽盆地中央坳陷区储层岩性智能识别方法 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1611-1622.

[3] 岳碧波,彭真明, 张启衡. α稳定分布地震信号特征指数估计方法[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2026-2034.
[4] 张丽丽, 刘四新, 吴俊军, 张芝贤. 层状介质探地雷达信号Q值估计及反Q滤波[J]. J4, 2011, 41(1): 265-270.
[5] 李红星,陶春辉,刘 财,邓显明,周建平,张金辉,顾春华,何拥华. 多频海底声学原位测试信号消除干扰研究[J]. J4, 2007, 37(5): 1034-1037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王惠初, 陆松年, 初航, 相振群, 张长捷, 刘欢. 辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景[J]. J4, 2011, 41(5): 1322 -1334 .
[2] 田梦宇, 狄永军, 王帅, 贾一龙. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2021, 51(3): 749 -766 .
[3] 谭晓淼, 高锐, 王海燕, 侯贺晟, 李洪强, 匡朝阳. 中亚造山带东段深地震反射剖面大炮揭露下地壳与Moho结构——数据处理与初步解释[J]. 吉林大学学报(地球科学版), 2021, 51(3): 898 -908 .
[4] 刘建民, 赵国春, 徐刚, 邱海成, 李建锋, 肖昌浩, 沙德铭, 刘福兴, 毕广源, 房兴, 张家奇, 郭祺, 于婳. 辽东半岛金矿成矿作用与深部资源勘查[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1613 -1635 .
[5] 张兵强, 赵富远, 杨清毫, 黄毅, 李俊海, 刘松. 贵州省盘县架底金矿床成矿地质条件及找矿方向[J]. 吉林大学学报(地球科学版), 2022, 52(1): 94 .
[6] 王明常, 刘鹏, 陈学业, 王凤艳, 宋玉莲, 刘瀚元. 基于GEE的东北三省城市建设用地扩张研究[J]. 吉林大学学报(地球科学版), 2022, 52(1): 292 .
[7] 张辉, 王志章, 杨亮, 李忠诚, 邢济麟. 松南上白垩统青山口组一段不同赋存状态页岩油定量评价[J]. 吉林大学学报(地球科学版), 2022, 52(2): 315 -327 .
[8] 王跃, 周奇明, 张金龙, 周光峰. 鲁西地区新太古代地壳增生事件:来自花岗岩和二长花岗岩U-Pb年代学、Hf同位素和岩石地球化学的证据[J]. 吉林大学学报(地球科学版), 2022, 52(2): 463 -485 .
[9] 唐军峰, 唐雪梅, 周基, 钟辉亚, 谢尚智. 滑坡堆积体变形失稳机制——以贵州剑河县东岭信滑坡为例[J]. 吉林大学学报(地球科学版), 2022, 52(2): 503 -516 .
[10] 吴朋宇, 张志红, 戴福初, 姚爱军. 顺层岩质边坡溃屈变形机制及失稳判定方法[J]. 吉林大学学报(地球科学版), 2022, 52(2): 517 -525 .