残差卷积编码-解码器,振幅一致性,不规则采样,数据重建,地震信号处理 ," /> 残差卷积编码-解码器,振幅一致性,不规则采样,数据重建,地震信号处理 ,"/> residual convolutional encoder-decoder, amplitude consistency, irregular sampling, data reconstruction, seismic signal processing ,"/> <p class="pf0"> <span class="cf0">基于振幅一致性残差卷积编码-解码器的</span>不规则缺失数据重建

吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (4): 1336-1350.doi: 10.13278/j.cnki.jjuese.20240078

• 地球探测与信息技术 • 上一篇    下一篇

基于振幅一致性残差卷积编码-解码器的不规则缺失数据重建

王志勇1,2,刘国昌1,2,王梓旭1,郭严粮2,秦晨3   

  1. 1. 中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249

    2. 中国石油大学(北京)海洋石油勘探国家工程实验室,北京 102249

    3. 中国石油大学(北京)CNPC物探重点实验室,北京 102249

  • 收稿日期:2024-04-10 出版日期:2025-07-26 发布日期:2025-08-05
  • 通讯作者: 刘国昌(1982—),男,教授,博士生导师,主要从事地震波传播机理、地震数据处理、地震反演与储层预测等方面的研究,E-mail: guochang.liu@cup.edu.cn
  • 作者简介:王志勇(1997—),男,博士研究生,主要从事地球物理勘探和深度学习信号处理研究,E-mail:2606810003@qq.com
  • 基金资助:
    国家自然科学基金项目(42374130,42074128);中国石油天然气集团有限公司科技管理部项目(2022DQ0604-02);中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项(ZLZX2020-03)

Reconstruction of Irregular Missing Data Based on Amplitude Consistency Residual Convolutional Encoder-Decoder

Wang Zhiyong1,2, Liu Guochang1,2, Wang Zixu1, Guo Yanliang2, Qin Chen3   

  1. 1. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249,

    China

    2. National Engineering Laboratory of Marine Oil Exploration, China University of Petroleum (Beijing), Beijing 102249, China

    3. Key Laboratory of Geophysical Prospecting of CNPC, China University of Petroleum (Beijing), Beijing 102249, China

  • Received:2024-04-10 Online:2025-07-26 Published:2025-08-05
  • Supported by:
    the National Natural Science Foundation of China (42374130, 42074128), the Project of R&D Department of China National Petroleum Corporation (2022DQ0604-02) and the Strategic Cooperation Technology Project of CNPC and CUPB (ZLZX2020-03)

摘要:

地震数据重建方法是地震信号处理中提高采样密度和获取完整波场信息的重要途径。野外勘探采集数据受到地表条件以及成本控制的限制,往往是不完整的或采样不规则的,因此研究不规则地震信号重建方法具有重要意义。本文基于不规则地震数据可以看作是规则完整数据的随机稀疏、两者在数据区间内数学统计分布高度一致、在稀疏域的表现具有极高相似性的假设,提出通过残差卷积编码-解码器将数据降维到稀疏域再升维的方法实现数据重建。进一步地,针对地震衰减导致的振幅深浅层不一致问题,以及不同数据间数学统计分布差异过大现象严重影响神经网络的训练和泛化问题,对网络的输入数据进行振幅一致性校正处理,平衡能量。合成数据算例证明了提出方法比传统二维预测误差滤波器和残差网络插值方法精度更高,比传统三维预测误差滤波器插值方法效率更快。不同的野外陆地和海洋数据算例都取得了较好的重建结果,证明该方法极大地增大了网络的泛化能力,降低了网络的训练难度。

关键词: 残差卷积编码-解码器')">

残差卷积编码-解码器, 振幅一致性, 不规则采样, 数据重建, 地震信号处理

Abstract:

The method of seismic data reconstruction is an important way to improve sampling density and obtain complete wavefield information in seismic signal processing. The data collected from field exploration is often incomplete or irregularly sampled due to limitations in surface conditions and cost control. Therefore, studying methods for reconstructing irregular seismic signals is of great significance. Based on the assumption that irregular seismic data can be regarded as random sparsity of regular complete data, the mathematical statistical distribution of the two data is highly consistent in the data interval and the performance in the sparse domain is extremely similar, this paper proposes a method of data reconstruction by using residual convolutional encoder-decoder to reduce the dimensionality of the data to the sparse domain and then increase it. Furthermore, this paper proposes amplitude consistency correction processing on the input data of the network to balance energy, in order to address the serious impact of inconsistency in amplitude depth and shallow layers caused by seismic attenuation, as well as significant differences in mathematical statistical distribution between different data, on the training and generalization of neural networks. The synthetic data example proves that the proposed method has higher accuracy than traditional two-dimensional prediction error filter and residual network interpolation methods, and is more efficient than traditional three-dimensional prediction error filter interpolation method. Different field land and ocean data examples have achieved good reconstruction results, proving that this method greatly increases the generalization ability of the network and reduces the training difficulty of the network.

Key words: residual convolutional encoder-decoder')">

residual convolutional encoder-decoder, amplitude consistency, irregular sampling, data reconstruction, seismic signal processing

中图分类号: 

  • P631.4
[1] 耿鑫, 王长鹏, 张春霞, 张讲社, 熊登. 基于多尺度特征自注意力模型的地震数据重建方法[J]. 吉林大学学报(地球科学版), 2025, 55(3): 1001-1013.
[2] 葛康建, 王长鹏, 张春霞, 张讲社, 熊登. 基于粗-细网络模型分步训练的地震数据重建方法[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1396-1405.
[3] 杨帆, 王长鹏, 张春霞, 张讲社, 熊登.

基于联合加速近端梯度和对数加权核范数最小化的地震数据重建 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1582-1592.

[4] 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .