吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (3): 934-940.doi: 10.13278/j.cnki.jjuese.201503302
于德武, 龚胜平
Yu Dewu, Gong Shengping
摘要:
位场向下延拓迭代法的实质内容是"向上延拓而不是向下延拓"和以"迭代的结果趋近于观测值"为标准的操作过程。根据数据操作流程剖析了位场向下延拓迭代法的运行机制,得到了迭代数据在空间域的变化规律,即用迭代法将观测高度的位场向下延拓一个深度h。这实际上是通过不同高度的向上延拓来实现的。也就是说,迭代次数增加一次,涉及的上延平面就增大一个h的高度。一般地,迭代次数n与上延高度h的关系为n~(n+1)h。在空间域中,初值、上延结果、差以及每一次校正后的结果都能用满足莱布尼兹定理的交错级数表示,从而得出了迭代法能够收敛的结论;或者,以"观测高度上的实测值与计算值的差值小到可以忽略"为标准,从数学上也能证明迭代法能够收敛。数学推论和模型试验结果说明了迭代的位场初值可以任意给定。在实际操作中,迭代误差标准的影响和由于迭代误差标准不恰当可能出现不能达到迭代标准的情况,需引起注意,也值得进一步研究。
中图分类号:
[1] Fedi M,Florio G.A Stable Downward Continuation by Using the ISVD Method[J].Geophysical Journal International,2002,151(1):146-156. |
[1] | 杜威, 许家姝, 吴燕冈, 郝梦成. 位场垂向高阶导数的Tikhonov正则化迭代法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 394-401. |
[2] | 王泰涵, 黄大年, 马国庆, 李野, 林松. 基于并行预处理算法的三维重力快速反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 384-393. |
[3] | 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444. |
[4] | 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267. |
[5] | 冯晅, 鲁晓满, 刘财, 周超, 金泽龙, 张明贺. 基于逐减随机震源采样法的频率域二维黏滞声波方程全波形反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1865-1873. |
[6] | 高成, 孙建国. 不同域的局部平面波分解应用与对比[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1523-1529. |
[7] | 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. |
[8] | 郭振波,李振春. 起伏地表条件下频率-空间域声波介质正演模拟[J]. 吉林大学学报(地球科学版), 2014, 44(2): 683-693. |
[9] | 马国庆,黄大年,杜晓娟,李丽丽. Hartley变换在位场(重、磁)异常导数计算中的应用[J]. 吉林大学学报(地球科学版), 2014, 44(1): 328-335. |
[10] | 汤文武,柳建新,童孝忠. 电导率连续变化的线源FCSEM有限元正演模拟[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1646-1654. |
[11] | 张生强,刘春成,韩立国,杨小椿. 基于L-BFGS算法和同时激发震源的频率多尺度全波形反演[J]. 吉林大学学报(地球科学版), 2013, 43(3): 1004-1012. |
[12] | 徐志锋,胡文宝. 层状大地频率域长导线源激发的电磁场[J]. 吉林大学学报(地球科学版), 2013, 43(1): 275-281. |
[13] | 张志厚,吴乐园. 位场向下延拓的相关系数法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1912-1919. |
[14] | 孙建国. 论直流电位场拟解析近似中的电位与电荷反射函数的物理意义[J]. J4, 2012, 42(2): 545-553. |
[15] | 王彦国, 王祝文, 张凤旭, 孟令顺, 张瑾, 邰振华. 位场向下延拓的导数迭代法[J]. J4, 2012, 42(1): 240-245. |
|