吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (3): 926-933.doi: 10.13278/j.cnki.jjuese.201503301

• 地球探测与信息技术 • 上一篇    下一篇

基于粒子群优化的细胞神经网络油气重力异常信息提取

杜润林1,2, 刘展1   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266555;
    2. 青岛海洋地质研究所国土资源部海洋油气资源与环境地质重点实验室, 山东 青岛 266071
  • 收稿日期:2014-08-15 发布日期:2015-05-26
  • 通讯作者: 刘展(1957),男,教授,博士生导师,主要从事区域地球物理资料处理与解释研究,E-mail:liuzhan5791@sina.com。 E-mail:liuzhan5791@sina.com
  • 作者简介:杜润林(1987),男,博士研究生,主要从事地球物理资料反演研究,E-mail:durunlin123@163.com
  • 基金资助:

    国家"863"计划项目(2012AA09A20107);国土资源部地质调查项目(GZH200900501);国家自然科学基金青年基金项目(41306062)

Gravity Anomaly Extraction for Hydrocarbon Based on Particle Swarm Optimization and Cellular Neural Network

Du Runlin1,2, Liu Zhan1   

  1. 1. School of Geosciences, China University of Petroleum(East China), Qingdao 266555, Shandong, China;
    2. The Key Laboratory of Marine Hydrocarbon Resources and Environment Geology, Qingdao Institute of Marine Geology, Qingdao 266071, Shandong, China
  • Received:2014-08-15 Published:2015-05-26

摘要:

细胞神经网络方法是一种有效的重力异常提取方法,提取出的重力异常信息具有较强的横向分辨能力,但如何训练优化模板是影响该方法提取精度的关键所在。笔者引入粒子群优化算法进行参数优化,结合细胞神经网络和粒子群方法各自的特点,通过细胞神经网络动态性能分析,对模板加入约束条件,并在粒子群算法中引入收缩因子,提出一种基于改进的粒子群优化的细胞神经网络算法。使用该方法进行了模型验证和实际资料处理,处理结果表明,该方法提高了重力异常提取的稳定性,能够更准确地提取油气藏重力异常信息。

关键词: 细胞神经网络, 粒子群优化, 重力异常, 收缩因子, 油气

Abstract:

Cellular neural network is an effective method for extracting useful anomalies with a strong capability of horizontal resolution. Its key point is to optimize the template when using cellular neural network to extract hydrocarbon gravity anomaly information. We presented an improved algorithm based on the characteristics of the cellular neural network and the particle swarm optimization, joined constraint condition in template, and introduced the shrinkage factors in particle swarm optimization individual characteristics through the analysis of the dynamic performance of cellular neural network. Through the model testing and the actual data processing, the algorithm proved to be more stable to optimize the template for extracting reservoir gravity anomaly information.

Key words: cellular neural network, particle swarm optimization, gravity anomaly, shrinkage factors, petroleum gas

中图分类号: 

  • P631.1

[1] 张凤旭,孟令顺,张凤琴,等.利用Hilbert变换计算重力归一化总梯度[J].地球物理学报,2005,48(3):704-709. Zhang Fengxu, Meng Lingshun, Zhang Fengqin, et al. Calculating Normalized Full Gradient of Gravity Anomaly Using Hilbert Ttransform[J]. Chinese Journal of Geophysics, 2005,48(3):704-709.

[2] 张刚. 油气重磁异常识别及提取方法研究[D].青岛: 中国石油大学, 2011. Zhang Gang. The Method Rresearch of Identification and Extraction of Oil Gravity and Magnetic Anomalies[D]. Qingdao: China University of Petroleum, 2011.

[3] 耿喜哲,张春华. 综合小波分析与分形方法进行弱磁异常识别[J].物探与化探, 2002, 26(2): 126-130. Geng Xizhe, Zhang Chunhua. The Application of Wavelet Analysis and Fractal Technique to the Recoganion of Micro-Magnetic Anomaly[J]. Geophysical & Geochemical Exploration, 2002, 26(2): 126-130.

[4] 宋双, 刘天佑, 苏俊青. 重磁小波多尺度分解及在火山岩识别中的应用[J]. 工程地球物理学报, 2008, 5(6): 675-679. Song Shuang, Liu Tianyou, Su Junqing. The Wavelet Multi-Scale Decomposition of Gravity and Magnet and Its Application in the Identification of Volcanic Rock[J]. Chinese Journal of Engineering Geophysics, 2008, 5(6): 675-679.

[5] Chua L O, Yang L. Cellular Neural Networks:Theory[J]. IEEE Trans on Circuits, 1988,35(5): 1273-1290.

[6] Albora A M,Ucan O N,Ozmen A,et al. Septaration of Bouguer Anomaly Map Using Cellular Neural Network[J]. Journal Applied Geophysics, 2001, 46:129-142.

[7] Albora A M,Ozmen A. Wavelet Based Design of Dynamical Neural Networks for Magnetic Map Processing[R].Istanbul:University of Istanbul Press,2002:133-140.

[8] 刘展,刘茂成,魏巍,等.重力异常分离的细胞神经网络方法研究[J].中国石油大学学报:自然科学版,2010,31(1):31-34. Liu Zhan, Liu Maocheng, Wei Wei, et al. A Gravity Anomaly Separation Method Based on Cellular Neural Network[J]. Journal of China University of Petroleum: Edition of Natural Science, 2010, 31(1): 31-34.

[9] Kennddy J, Eberhart R. Particle Swarm Optimization[C]// Proceedings of IEEE International Conference on Neutral Networks. Perth: IEEE, 1995:1942-1948.

[10] Eberhart R C, Shi Y. Particle Swarm Optimization: Developments, Applicationgs and Resources[C]// Pro Congress on Evolutonary Computation 2001. Piscataway: IEEE, 2001: 81-86.

[11] 卢珊萍,于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,19(4):83-86. Lu Shanping, Yu Shenglin. A Template Design Method for Cellular Neural Network Based Particle Swarm Optimizer Algorithm[J]. Computer Technology and Development, 2009,19(4):83-86.[HQ]

[12] Karakuzu C. Parameter Tuning of Fuzzy Sliding Mode Controller Using Particle Swarm Optimization[J]. International Journal of Innovative Computing Information and Control, 2010, 6(10): 4755-4770.

[13] 马国庆,黄大年,杜晓娟,等.Hartley变换在位场(重、磁)异常导数计算中的应用[J].吉林大学学报:地球科学版,2014,44(1):328-335. Ma Guoqing, Huang Danian, Du Xiaojuan, et al. Hartley Transform in the Application of the Derivatives Date[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(1):328-335.

[14] 管志宁,侯俊胜.重磁异常反演的拟BP神经网路方法及其应用[J].地球物理学报,1998,41(2):242-251. Guan Zhining, Hou Junsheng. Inversion of Gravity and Magnetic Anomalies Using Pseudo-BP Neural Network Method and Its Application[J]. Chinese Journal of Geophysics, 1998,41(2):242-251.

[15] 曾琴琴,王永华,吴文贤.二维磁异常的粒子群快速成像方法及其应用[J].吉林大学学报:地球科学版,2013,43(2):616-622. Zeng Qinqin, Wang Yonghua, Wu Wenxian. Fast Imaging of 2D Magnetic Anomaly by Particle Swarm Optimization and Its Application[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(2): 616-622.

[16] Chua L, Thiran P. An Analytic Method for Designing Simple Cellular Neural Networks[J]. IEEE Trans on Circuits and Systems, 1991, 38(11):1332-1341.

[17] 范正国,刘前坤,黄旭钊,等.自适应重磁对应分析[J].吉林大学学报:地球科学版,2012,42(6):1904-1919. Fan Zhengguo, Liu Qiankun, Huang Xuzhao, et al. Adaptive Correlative Analysis Between Aeromagnetic and Gravity Anomaly[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(6): 1904-1919.

[18] Zarandy A, Stoeffets A K, Roska T,et al. Implementation of Binary and Gray-Scale Mathematical Morphology on the CNN Universal Machine[J]. IEEE Trans on CAS, 1998,45(2): 163-168.

[19] 侯遵泽,杨文采.中国重力异常的小波变换与多尺度分析[J].地球物理学报,1997,40(1):85-95. Hou Zunze, Yang Wencai. Wavelet Transform and Multi-Scale Analysis on Gravity Anomalies of China[J]. Chinese Journal of Sinica, 1997,40(1):85-95.

[20] 杨文采,施志群,侯遵泽,等.离散小波变换与重力异常多重分解[J].地球物理学报, 2001,44(4):534-541. Yang Wencai, Shi Zhiqun, Hou Zunze, et al. Discrete Wavelet Transform for Multiple Decomposition of Gravity Anomalies[J]. Chinese Journal of Geophysics, 2001,44(4):534-541.

[21] Hinze W J, Aiken C V,Brozena J M,et al. New Standard for Reducing Gravity Data: The North American Gravity Database[J]. Geophysics, 2005,70(4): 346-365.

[22] Wu Jianshe, Jiao Licheng. Synchronization in Dynamic Networks with Nonsymmetrical Time-Delay Coupling Based on Linear Feedback Controllers[J]. Physica, 2008, 387(3): 2111-2119.

[23] Zhong W S, Stefanovski J D,Dimirovski G M,et al. Decentralized Control and Synchronization of Time-Varying Complex Dynamical Network[J]. Physica, 2009, 142(7): 151-167.

[24] Krink T, Vesterstrom J S, Riget J. Particle Swarm Optimization with Spatial Particle Extension[C]//Proceeding of International Conference on Evolutionary Computation.[S.l.].IEEE, 2002: 1474-1497.

[1] 牟敦山, 付广, 陈雪晴. 南堡1号构造馆三段断盖配置油气渗漏部位及其控藏作用[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1008-1017.
[2] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965-980.
[3] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[4] 舒晴, 朱晓颖, 高维, 李瑞, 尹航. 三塘湖盆地航磁异常特征及油气远景预测[J]. 吉林大学学报(地球科学版), 2018, 48(2): 451-460.
[5] 姚刚, 董向欣, 李丽丽, 马国庆, 孟令顺. 东海陆架盆地构造划分的高精度重磁解释技术[J]. 吉林大学学报(地球科学版), 2018, 48(2): 517-524.
[6] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[7] 马国庆, 孟庆发, 黄大年. 基于重力异常的松辽盆地构造特征识别[J]. 吉林大学学报(地球科学版), 2018, 48(2): 507-516.
[8] 杨德相, 付广, 孙同文, 李熹微, 姜海燕, 刘滨莹. 油源断裂优势通道输导油气能力综合评价方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1678-1686.
[9] 马德龙, 何登发, 魏东涛, 王彦君, 魏彩茹. 准噶尔盆地南缘古牧地背斜多期构造变形特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1695-1704.
[10] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
[11] 张博为, 付广, 张居和, 胡明, 刘峻桥, 王浩然. 油源断裂转换带裂缝发育及其对油气控制作用——以冀中坳陷文安斜坡议论堡地区沙二段为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 370-381.
[12] 李博南, 刘财, 郭智奇. 基于等效介质模型和频变AVO反演的裂缝储层参数估算方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 234-244.
[13] 陈冬霞, 庞雄奇, 杨克明, 祝渭平, 严青霞. 川西坳陷深层叠复连续型致密砂岩气藏成因及形成过程[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1611-1623.
[14] 刘峻桥, 吕延防, 付广, 孙同文, 李佳兴. 正断层输导油气运移模式及其对油气分布的控制作用[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1672-1683.
[15] 姜贵璞. 陆相断陷盆地油气空间互补分布成因及分布范围的确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1649-1659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!