吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 706-718.doi: 10.13278/j.cnki.jjuese.201703106

• 地质与资源 • 上一篇    下一篇

滇西北兰坪盆地金满脉状铜矿床成矿流体特征及其成矿意义

张锦让1,2, 温汉捷2, 邹志超3   

  1. 1. 中国地质调查局成都地质调查中心, 成都 610081;
    2. 中国科学院地球化学研究所, 贵阳 550002;
    3. 成都理工大学地球科学学院, 成都 610059
  • 收稿日期:2016-11-26 出版日期:2017-05-26 发布日期:2017-05-26
  • 作者简介:张锦让(1985-),男,副研究员,主要从事矿床地球化学方面的研究,E-mail:zhangjinrang123@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(41403038,41403036);中国地质调查局地质调查项目(121201010000150016)

Ore-Forming Fluid Characteristics of the Jinman Vein-Type Copper Deposits in the Western Lanping Basin and Its Metallogenic Significance

Zhang Jinrang1,2, Wen Hanjie2, Zou Zhichao3   

  1. 1. Chengdu Center, China Geological Survey, Chengdu 610081, China;
    2. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
    3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
  • Received:2016-11-26 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by National Natural Science Foundation for Young Scientists of China (41403038,41403036) and Geological Survey Projects of China Geological Survey (121201010000150016)

摘要: 滇西北兰坪盆地西缘发育大量沉积岩容矿脉状铜多金属矿床,矿体的分布受逆冲推覆系统控制,金满是其中储量最大、品位最高的铜矿床。成矿过程可分为3个阶段:成矿前(不含矿化石英-铁白云石脉)、主成矿阶段(含铜硫化物石英脉)、晚成矿阶段(少硫化物方解石+石英脉)。流体包裹体岩相学和显微测温结果表明:成矿前和主成矿期石英中流体包裹体特征变化不大,成矿前和主成矿期石英中均存在3种类型的包裹体,以水溶液包裹体为主,含CO2水溶液包裹体次之,富CO2包裹体较少出现。含CO2水溶液包裹体测温结果也差别不大,均一温度都集中在240~320 ℃,盐度(w(NaCl))集中在1%~4%。水溶液包裹体均一温度变化也不大,集中在160~230 ℃,明显低于含CO2水溶液包裹体;盐度却存在较大的变化,主成矿期盐度变化范围明显较大,且峰值高于成矿前。晚成矿阶段则仅出现水溶液包裹体,均一温度和盐度都明显降低,均一温度集中在120~185 ℃,盐度集中在1.4%~9.3%。结合其他证据,笔者认为金满铜矿床包含两种不同性质的流体:深源流体,以中高温、中低盐度、富含CO2为特征;盆地卤水,以中低温、中高盐度、贫CO2为特征。成矿过程中未发生明显的沸腾和相分离作用,深源流体和盆地卤水的混合可能是导致Cu等成矿元素沉淀的重要机制。

关键词: 成矿流体, 沉积岩容矿脉状铜矿床, 金满脉状铜矿床, 兰坪盆地

Abstract: A large number of sediment-hosted vein-type copper deposits controlled by a thrust-nappe system have been discovered in the west part of the Lanping basin, among which, the Jinman deposit is the largest in tonnage scale and with the highest Cu grade. The mineralization process of this deposit can be divided into three stages, including the early stage (pre-ore quartz-ankerite vein stage), the major stage (massive polymetallic sulphide-quartz vein stage), and the late stage (carbonate-quartz stage). The detailed studies of fluid inclusions distinguishes three types of fluid inclusions dominated by aqueous water in both pre-ore and syn-ore quartz from the Jinman deposit, including aqueous water, CO2-bearing, and pure CO2 inclusions. There is no obvoius difference between pre-ore and syn-ore quartz in terms of the type of fluid inclusions and microthermometric parameters of their CO2-bearing inclusions. The homogenization temperatures of CO2-bearing inclusions in both pre-ore and syn-ore quartz vary from 217 to 334 ℃(peak at 240~320 ℃), with corresponding salinities ranging from 1% to 4%. The homogenization temperatures of aqueous inclusions in both pre-ore and syn-ore quartz vary from 143 ℃ to 239 ℃(peak at 160~230 ℃), much lower than those of CO2-bearing inclusions. However, the salinities of aqueous inclusions show significant difference between pre-ore (3.1%~18.0%) and syn-ore quartz (4.1%~22.8%). Quartz-calcite vein in the late mineralizing stage only have aqueous inclusions, with homogenization temperature of 120~185 ℃, and salinities of 1.4%~9.3%. The fluid inclusion characteristics, together with other evidence, indicate that (1) there are two fluid systems responsible for Cu mineralization in the Jinman deposit one is deep crustal fluids, characterized by high CO2 content and relatively low salinities, and the other is basin brine, characterized by relatively high salinities and low temperatures. (2)The fluid mixing, without boiling or phase separation, might be the major precipitation mechanism.

Key words: ore-forming fluid, sediment-hosted vein-type copper deposits, Jinman vein-type copper deposit, Lanping basin

中图分类号: 

  • P618.41
[1] 薛春纪,陈毓川,杨建民,等. 滇西兰坪盆地构造体制和成矿背景分析[J]. 矿床地质,2002,21(1): 36-44. Xue Chunji, Chen Yuchuan, Yang Jianmin, et al. Analysis of Ore-Forming Background and Tectonic System of Lanping Basin, Western Yunnan Province [J]. Mineral Deposits, 2002, 21(1): 36-44.
[2] 侯增谦,宋玉财,李政,等. 青藏高原碰撞造山带Pb-Zn-Ag矿床新类型: 成矿基本特征与构造控矿模型[J]. 矿床地质,2008,27(2): 123-144. Hou Zengqian, Song Yucai, Li Zheng, et al. Thrust-Controlled, Sediments-Hosted Pb-Zn-Ag-Cu Deposits in Eastern and Northern Margins of Tibetan Orogenic Belt: Geological Features and Tectonic Model[J].Mineral Deposits, 2008, 27(2): 123-144.
[3] He Longqing, Song Yucai, Chen Kaixu, et al. Thrust-Controlled, Sediment-Hosted, Himalayan Zn-Pb-Cu-Ag Deposits in the Lanping Foreland Fold Belt, Eastern Margin of Tibetan Plateau [J]. Ore Geology Reviews, 2009, 36: 106-132.
[4] 邓军,侯增谦,莫宣学,等. 三江特提斯复合造山与成矿作用[J]. 矿床地质,2010, 29(1): 37-42. Deng Jun, Hou Zengqian, Mo Xuanxue, et al. Super Imposed Ore Genesis and Metallogenesis in Sanjiang Tethys [J]. Mineral Deposits, 2010, 29(1): 37-42.
[5] 宋玉财,侯增谦,杨天南,等. 三江喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J]. 岩石矿物学杂志,2011, 30(3): 355-380. Song Yucai, Hou Zengqian, Yang Tiannan, et al. Sediment Hosted Himalayan Base Metal Deposits in Sanjiang Region: Characteristics and Genetic Types [J]. Acta Petrol Mineral, 2011, 30(3): 355-380.
[6] Misra K C. Understanding Mineral Deposits [M]. London: Kluwer Academic Publishers, 2000.
[7] 侯增谦,潘桂棠,王安建,等. 青藏高原碰撞造山带: Ⅱ:晚碰撞转换成矿作用[J]. 矿床地质,2006, 25(5): 521-543. Hou Zengqian, Pan Guitang, Wang Anjian, et al. Metallogenesis in Tibetan Collisional Orogenic Belt: II:Mineralization in Late-Collisional Transformation Setting [J]. Mineral Deposits, 2006, 25(5): 521-543.
[8] 何明勤,刘家军,李朝阳. 兰坪盆地铅锌铜大型矿集区的流体成矿作用机制:以白秧坪铜钴多金属地区为例[M]. 北京: 地质出版社, 2004. He Mingqin, Liu Jiajun, Li Chaoyang. Mechanism of Ore-Forming Fluids of the Lanping Pb-Zn-Cu Polymetallic Mineralized Concentration Area:An Example Study on the Baiyangping Ore District [M]. Beijing: Geological Publishing House, 2004.
[9] 李峰,甫为民.滇西红层铜矿地质[M]. 昆明: 云南大学出版社, 2000. Li Feng, Fu Weimin. Geology of Red Bed Copper Deposits in Western Yunnan [M]. Kunming: Yunnan University Press, 2000.
[10] 王光辉. 滇西兰坪盆地金满—连城脉状铜矿床成因研究[D].昆明: 昆明理工大学, 2010. Wang Guanghui. The Genetic Model of Liancheng-Jinman Vein-Type Copper in the Lanping Basin, Yunman Province [D]. Kunming: Kunming University of Science and Technology, 2010.
[11] 胡瑞忠,钟宏,叶造军,等. 金顶超大型铅-锌矿床氦、氩同位素地球化学[J]. 中国科学:D辑,1998, 28(3): 208-213. Hu Ruizhong, Zhong Hong, Ye Zaojun, et al. Helium and Aargon Isotopic Geochemistry of Jinding Superlarge Pb-Zn Deposit [J]. Science China:Series D, 1998, 28(3): 208-213.
[12] 薛春纪,陈毓川,杨建民,等. 滇西北兰坪铅锌铜银矿田含烃富CO2成矿流体及其地质意义[J]. 地质学报,2002, 76 (2): 244-253. Xue Chunji, Chen Yuchuan, Yang Jianmin, et al. The CO2-Rich and Hydrocarbon-Bearing Ore-Forming Fluid and Their Metallogenic Role in the Lanping Pb-Zn-Ag-Cu Ore Field, North-Western Yunan [J]. Acta Geological Sinica, 2002, 76(2): 244-253.
[13] 赵海滨. 滇西兰坪盆地中北部铜多金属矿床成矿地质特征及地质条件[D].北京: 中国地质大学, 2006. Zhao Haibin. Study on the Characteristics and Metallogenic Conditions of Copper-Polymetallic Deposits in Middle-Northern Lanping Basin, Western Yunnan[D]. Beijing: China University of Geosciences, 2006.
[14] Chi Guoxiang, Xue Chunji. Abundance of CO2-Rich Fluid Inclusions in a Sedimentary Basin-Hosted Cu Deposit at Jinman, Yunnan, China: Implications for Mineralization Environment and Classification of the Deposit [J]. Mineralium Deposita, 2011, 46: 365-380.
[15] Xue Chunji, Zeng Rong, Liu Shuwen, et al. Geo-logic, Fluid Inclusion and Isotopic Characteristics of the Jinding Zn-Pb Deposit, Western Yunnan, South China: A Review [J]. Ore Geology Reviews, 2007, 31: 337-359.
[16] 刘家军,李朝阳,潘家永,等. 兰坪—思茅盆地砂页岩中铜矿床同位素地球化学[J]. 矿床地质,2000, 19(3): 223-234. Liu Jiajun, Li Chaoyang, Pan Jiayong, et al. Isotopic Geochemistry of Copper Deposits from Sandstone and Shale of Lanping-Simao Basin, Western Yunan [J]. Mineral Deposits, 2000, 19(3): 223-234.
[17] 吴南平,蒋少涌,廖启林,等. 云南兰坪—思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究[J]. 岩石学报,2003,19(4): 799-807. Wu Nanping, Jiang Shaoyong, Liao Qilin, et al. Lead and Sulfur Isotope Geochemistry and the Ore Sources of the Vein-Type Copper Deposit in Lanping-Simao Basin, Yunan province [J]. Acta Petrologica Sinica, 2003, 19(4): 799-807.
[18] Ji Hongbing, Li Chaoyang. Geochemistry of Jinman Copper Vein Deposit, West Yunnan Province, China: Ⅱ: Fluid Inclusion and Stable Isotope Geochemical Characteristics [J]. Chinese J Geochemy, 1998, 17(1): 81-90.
[19] 阙梅英,程敦模,张立生,等. 兰坪—思茅盆地铜矿床[M]. 北京: 地质出版社,1998. Que Meiying, Cheng Dunmo, Zhang Lisheng, et al. Copper Deposits in Lanping-Simao Basin [M]. Beijing: Geological Publishing House, 1998.
[20] 何明勤,宋焕斌,冉崇英,等. 云南兰坪金满铜矿床改造成因的证据[J]. 地质与勘探, 1998,34(2): 13-15. He Mingqin, Song Huanbin, Ran Congying, et al. Evidence for Transformed Genesis of the Jinman Copper Deposit in Lanping [J]. Geology and Prospecting, 1998, 34(2): 13-15.
[21] 颜文,李朝阳. 一种新类型铜矿床的地球化学特征及其热水沉积成因[J]. 地球化学,1997,26(1): 54-63. Yan Wen, Li Chaoyang. Geochemical Characteristics and Hydrothermal Sedimentary Genesis of a New Type of Copper Deposits [J]. Geochimica, 1997, 26(1): 54-63.
[22] Phillips G N, Powell J K. Link Between Gold Pro-vinces [J]. Economic Geology, 1993, 88: 1084-1098.
[23] Rosenbaum J M, Zindler A, Rubenstone J L. Mantle Fluids: Evidence from Fluid Inclusions [J]. Geochimica et Cosmochimica Acta, 1996, 60: 3229-3252.
[24] Diamond L W. Review of the Systematics of CO2-H2O Fluid Inclusions [J]. Lithos, 2001, 55: 69-99.
[25] Wilkinson J J. FluidInclusions in Hydrothermal Ore Deposits[J]. Lithos, 2001, 55: 229-272.
[26] 陈衍景,倪培,范宏瑞,等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报,2007,23(9): 2085-2108. Chen Yanjing, Ni Pei, Fan Hongrui, et al. Diagnostic Fluid Inclusions of Different Types of Hydrothermal Gold Deposits [J]. Acta Petrologica Sinica, 2007, 23(9): 2085-2108.
[27] 张成江,倪师军,滕彦国,等. 兰坪盆地喜马拉雅期构造-岩浆活动与流体成矿的关系[J]. 矿物岩石,2000,20(2): 35-39. Zhang Chengjiang, Ni Shijun, Teng Yanguo, et al. Relationship Between Himalayan Tectono-Magmatic Activity and Mineralization in the Lanping Basin [J]. Mineral Petrologica, 2000, 20(2): 35-39.
[28] 董方浏,莫宣学,侯增谦,等. 云南兰坪盆地喜马拉雅期碱性岩40Ar/39Ar年龄及地质意义[J]. 岩石矿物学杂志,2005,24(2): 103-109. Dong Fangliu, Mo Xuanxue, Hou Zengqian, et al. 40Ar/39Ar Ages of Himalayan Alkaline Rocks in the Lanping Basin, Yunnan and Their Geological Significance [J]. Acta Petrologica et Mineralogica, 2005, 24(2): 103-109.
[29] 李文昌,潘桂棠,侯增谦,等. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社,2010. Li Wenchang, Pan Guitang, Hou Zengqian, et al. The Mineralization Theories and Techniques of the Arc-Basin System of "Three-River" Area of Southwest China [M]. Beijing: Geological Publishing House, 2010.
[30] 徐启东,李建威. 云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带:流体包裹体和稳定同位素证据[J]. 矿床地质,2003, 22(4): 365-376. Xu Qidong, Li Jianwei. Ore-Forming Fluid Migration in Relation to Mineralization Zoning in Cu-Polymetallic Minralization District of Northern Lanping, Yunnan: Evidence from Fluid Inclusions and Stable Isotopes [J]. Mineral Deposits, 2003, 22(4): 365-376.
[31] 何龙清,陈开旭,余凤鸣. 云南兰坪盆地推覆构造及其控矿作用[J]. 地质与勘探,2004, 40(4): 7-12. He Longqing, Chen Kaixu, Yu Fengming. Nappe Tectonics and Their Ore-Controlling of Lanping Basin in Yunan Province [J]. Geology and Prospecting, 2004, 40(4): 7-12.
[32] 刘家军,李朝阳,张乾,等. 滇西金满铜矿床中木质结构及其成因意义[J]. 中国科学:D辑,2001, 31(2): 89-95. Liu Jiajun, Li Chaoyang, Zhang Qian, et al. Wood Textures in the Jinman Cu Deposit in Western Yunnan and Their Significance for Ore Genesis [J]. Science China:Series D, 2001, 31(2):89-95.
[33] Su Wenchao, Heinrich C A, Pettke T, et al. Se-diment-Hosted Gold Deposits in Guizhou, China: Products of Wall-Rock Sulfidation by Deep Crustal Fluids [J]. Economic Geology, 2009, 104: 73-93.
[34] Bodnar R J. Revised Equation and Table for Deter-mining the Freezing Point Depression of H2O-NaCl Solutions [J]. Geochimica et Cosmochimica Acta, 1993, 57: 683-684.
[35] 叶庆同,胡云中,杨岳清. 三江地区区域地球化学背景和金银铅锌成矿作用[M]. 北京: 地质出版社,1992. Yie Qingtong, Hu Yunzhong, Yang Yueqing. The Regional Geochemical Background of Gold and Silver Lead-Zinc Mineralization of Sanjiang Region [M]. Beijing: Geological Publishing House, 1992.
[36] 薛春纪,陈毓川,杨建民,等. 金顶铅锌矿床地质-地球化学[J]. 矿床地质,2002, 21(3): 270-277. Xue Chunji, Chen Yuchuan, Yang Jianmin, et al. Geology and Geochemistry of the Jinding Pb-Zn Deposit [J]. Mineral Deposits, 2002, 21(3): 270-277.
[37] 徐晓春,谢巧勤,陆三明,等. 滇西兰坪盆地西缘铜矿床矿物流体包裹体研究[J]. 矿物学报,2005, 25(2): 170-176. Xu Xiaochun, Xie Qiaoqin, Lu Sanming, et al. Fluid Inclusion Ccharacteristics of Copper Deposits on the Western Border of Lanping basin, Yunan Province[J]. Acta Mineral Sinica, 2005, 25(2): 170-176.
[38] 卢焕章,范宏瑞,倪培,等. 流体包裹体[M]. 北京: 科学出版社,2004. Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fuild Inclusions [M]. Beijing: Science Press, 2004.
[39] Xue Chunji, Chi Guoxiang, Chen Yuchuan, et al. Two Fluid Systems in the Lanping Basin, Yunnan, China:Their Interaction and Implications for Mineralization [J]. Journal of Geochemical Exploration, 2006, 89: 436-439.
[40] Kerrich R,Fyfe W S. The Gold-Carbonate Associa-tions: Source of CO2 and CO2 Fixation Reactions in Archean Lode Deposits [J]. Chemical Geology, 1981,33: 265-294.
[41] 李文昌,尹光侯,余海军,等. 云南普朗斑岩型铜矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版),2013,43(5): 1436-1447. Li Wenchang, Yin Guanghou, Yu Haijun, et al. Characteristics of the Ore-Forming Fluid and Genesis of the Pulang Copper Deposit in Yunnan Province [J]. Journal of Jilin University (Earth Science Edition), 2013, 43(5): 1436-1447.
[42] 薛建玲,李胜荣,孙文燕,等. 胶东邓格庄金矿床流体包裹体氦、氩同位素组成及其成矿物质来源示踪[J]. 吉林大学学报(地球科学版),2013,43(2): 400-414. Xue Jianling, Li Shengrong, Sun Wenyan, et al. Helium and Argon Isotopic Composition in Fluid Inclusions and the Source of Ore-Forming Materials of Denggezhuang Gold Deposit in Jiaodong Peninsula [J]. Journal of Jilin University (Earth Science Edition), 2013, 43(2): 400-414.
[43] 张锦让,温汉捷,邹志超,等. 云南兰坪盆地西缘脉状铜矿床富CO2流体来源的He和Ar同位素证据[J]. 地球化学,2015,44(2): 167-177. Zhang Jinrang, Wen Hanjie, Zou Zhichao, et al. Origin of CO2-Rich Ore-Forming Fluids in the Vein-Type Cu Deposits in Western Lanping Basin, Yunnan: Evidence from He and Ar Isotopes [J]. Geochimica, 2015, 44(2): 167-177.
[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[2] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[3] 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[4] 王可勇, 付丽娟, 韦烈民, 王志高. 辽宁榛子沟铅锌矿床热液叠加成矿作用特征及成矿流体来源[J]. 吉林大学学报(地球科学版), 2016, 46(1): 80-90.
[5] 贾福聚, 燕永锋, 伍伟, 刘晓玮. 云南老君山锡多金属成矿区硫、铅、氢、氧同位素地球化学[J]. 吉林大学学报(地球科学版), 2016, 46(1): 105-118.
[6] 朱志军, 郭福生, 刘腾, 刘远超. 云南兰坪盆地古近系细碎屑岩地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1631-1641.
[7] 张志辉, 张达, 狄永军, 李兴俭, 阙朝阳, 马先平, 杜泽忠. 安徽铜陵焦冲金矿床成矿流体特征及成矿机制[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1657-1666.
[8] 王承洋, 王可勇, 周向斌, 李文, 黄广环, 李剑锋, 张雪冰, 于琪. 内蒙古东山湾钨钼多金属矿床成矿流体地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2015, 45(3): 759-771.
[9] 王力,潘忠翠,孙丽伟. 山东莱州新城金矿床流体包裹体[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1166-1176.
[10] 熊索菲,姚书振,宫勇军,何谋春,祁冬梅,向鹏. 河南祁雨沟金矿临界-超临界包裹体特征及成矿流体演化[J]. 吉林大学学报(地球科学版), 2014, 44(1): 120-133.
[11] 李文昌,尹光侯,余海军,薛顺荣,王可勇,王承洋,王文旭. 云南普朗斑岩型铜矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1436-1447.
[12] 朱江,吕新彪,莫亚龙,曹晓峰,陈超. 甘肃拾金坡金矿床成因:来自40Ar/39Ar定年、成矿流体及H-O-S同位素证据[J]. 吉林大学学报(地球科学版), 2013, 43(2): 427-439.
[13] 李永胜, 赵财胜, 吕志成, 严光生, 甄世民. 西藏甲玛铜多金属矿床流体包裹体特征及地质意义[J]. J4, 2011, 41(1): 122-136.
[14] 王可勇, 卿敏, 边红业, 万多, 孙丰月, 刘正宏, 纪兆家. 辽宁五龙金矿床地质特征及成矿流体地球化学性质[J]. J4, 2010, 40(3): 557-564.
[15] 孙丰月,王 力. 内蒙拜仁达坝银铅锌多金属矿床成矿条件[J]. J4, 2008, 38(3): 376-0383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!