吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 706-718.doi: 10.13278/j.cnki.jjuese.201703106
张锦让1,2, 温汉捷2, 邹志超3
Zhang Jinrang1,2, Wen Hanjie2, Zou Zhichao3
摘要: 滇西北兰坪盆地西缘发育大量沉积岩容矿脉状铜多金属矿床,矿体的分布受逆冲推覆系统控制,金满是其中储量最大、品位最高的铜矿床。成矿过程可分为3个阶段:成矿前(不含矿化石英-铁白云石脉)、主成矿阶段(含铜硫化物石英脉)、晚成矿阶段(少硫化物方解石+石英脉)。流体包裹体岩相学和显微测温结果表明:成矿前和主成矿期石英中流体包裹体特征变化不大,成矿前和主成矿期石英中均存在3种类型的包裹体,以水溶液包裹体为主,含CO2水溶液包裹体次之,富CO2包裹体较少出现。含CO2水溶液包裹体测温结果也差别不大,均一温度都集中在240~320 ℃,盐度(w(NaCl))集中在1%~4%。水溶液包裹体均一温度变化也不大,集中在160~230 ℃,明显低于含CO2水溶液包裹体;盐度却存在较大的变化,主成矿期盐度变化范围明显较大,且峰值高于成矿前。晚成矿阶段则仅出现水溶液包裹体,均一温度和盐度都明显降低,均一温度集中在120~185 ℃,盐度集中在1.4%~9.3%。结合其他证据,笔者认为金满铜矿床包含两种不同性质的流体:深源流体,以中高温、中低盐度、富含CO2为特征;盆地卤水,以中低温、中高盐度、贫CO2为特征。成矿过程中未发生明显的沸腾和相分离作用,深源流体和盆地卤水的混合可能是导致Cu等成矿元素沉淀的重要机制。
中图分类号:
[1] 薛春纪,陈毓川,杨建民,等. 滇西兰坪盆地构造体制和成矿背景分析[J]. 矿床地质,2002,21(1): 36-44. Xue Chunji, Chen Yuchuan, Yang Jianmin, et al. Analysis of Ore-Forming Background and Tectonic System of Lanping Basin, Western Yunnan Province [J]. Mineral Deposits, 2002, 21(1): 36-44. [2] 侯增谦,宋玉财,李政,等. 青藏高原碰撞造山带Pb-Zn-Ag矿床新类型: 成矿基本特征与构造控矿模型[J]. 矿床地质,2008,27(2): 123-144. Hou Zengqian, Song Yucai, Li Zheng, et al. Thrust-Controlled, Sediments-Hosted Pb-Zn-Ag-Cu Deposits in Eastern and Northern Margins of Tibetan Orogenic Belt: Geological Features and Tectonic Model[J].Mineral Deposits, 2008, 27(2): 123-144. [3] He Longqing, Song Yucai, Chen Kaixu, et al. Thrust-Controlled, Sediment-Hosted, Himalayan Zn-Pb-Cu-Ag Deposits in the Lanping Foreland Fold Belt, Eastern Margin of Tibetan Plateau [J]. Ore Geology Reviews, 2009, 36: 106-132. [4] 邓军,侯增谦,莫宣学,等. 三江特提斯复合造山与成矿作用[J]. 矿床地质,2010, 29(1): 37-42. Deng Jun, Hou Zengqian, Mo Xuanxue, et al. Super Imposed Ore Genesis and Metallogenesis in Sanjiang Tethys [J]. Mineral Deposits, 2010, 29(1): 37-42. [5] 宋玉财,侯增谦,杨天南,等. 三江喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J]. 岩石矿物学杂志,2011, 30(3): 355-380. Song Yucai, Hou Zengqian, Yang Tiannan, et al. Sediment Hosted Himalayan Base Metal Deposits in Sanjiang Region: Characteristics and Genetic Types [J]. Acta Petrol Mineral, 2011, 30(3): 355-380. [6] Misra K C. Understanding Mineral Deposits [M]. London: Kluwer Academic Publishers, 2000. [7] 侯增谦,潘桂棠,王安建,等. 青藏高原碰撞造山带: Ⅱ:晚碰撞转换成矿作用[J]. 矿床地质,2006, 25(5): 521-543. Hou Zengqian, Pan Guitang, Wang Anjian, et al. Metallogenesis in Tibetan Collisional Orogenic Belt: II:Mineralization in Late-Collisional Transformation Setting [J]. Mineral Deposits, 2006, 25(5): 521-543. [8] 何明勤,刘家军,李朝阳. 兰坪盆地铅锌铜大型矿集区的流体成矿作用机制:以白秧坪铜钴多金属地区为例[M]. 北京: 地质出版社, 2004. He Mingqin, Liu Jiajun, Li Chaoyang. Mechanism of Ore-Forming Fluids of the Lanping Pb-Zn-Cu Polymetallic Mineralized Concentration Area:An Example Study on the Baiyangping Ore District [M]. Beijing: Geological Publishing House, 2004. [9] 李峰,甫为民.滇西红层铜矿地质[M]. 昆明: 云南大学出版社, 2000. Li Feng, Fu Weimin. Geology of Red Bed Copper Deposits in Western Yunnan [M]. Kunming: Yunnan University Press, 2000. [10] 王光辉. 滇西兰坪盆地金满—连城脉状铜矿床成因研究[D].昆明: 昆明理工大学, 2010. Wang Guanghui. The Genetic Model of Liancheng-Jinman Vein-Type Copper in the Lanping Basin, Yunman Province [D]. Kunming: Kunming University of Science and Technology, 2010. [11] 胡瑞忠,钟宏,叶造军,等. 金顶超大型铅-锌矿床氦、氩同位素地球化学[J]. 中国科学:D辑,1998, 28(3): 208-213. Hu Ruizhong, Zhong Hong, Ye Zaojun, et al. Helium and Aargon Isotopic Geochemistry of Jinding Superlarge Pb-Zn Deposit [J]. Science China:Series D, 1998, 28(3): 208-213. [12] 薛春纪,陈毓川,杨建民,等. 滇西北兰坪铅锌铜银矿田含烃富CO2成矿流体及其地质意义[J]. 地质学报,2002, 76 (2): 244-253. Xue Chunji, Chen Yuchuan, Yang Jianmin, et al. The CO2-Rich and Hydrocarbon-Bearing Ore-Forming Fluid and Their Metallogenic Role in the Lanping Pb-Zn-Ag-Cu Ore Field, North-Western Yunan [J]. Acta Geological Sinica, 2002, 76(2): 244-253. [13] 赵海滨. 滇西兰坪盆地中北部铜多金属矿床成矿地质特征及地质条件[D].北京: 中国地质大学, 2006. Zhao Haibin. Study on the Characteristics and Metallogenic Conditions of Copper-Polymetallic Deposits in Middle-Northern Lanping Basin, Western Yunnan[D]. Beijing: China University of Geosciences, 2006. [14] Chi Guoxiang, Xue Chunji. Abundance of CO2-Rich Fluid Inclusions in a Sedimentary Basin-Hosted Cu Deposit at Jinman, Yunnan, China: Implications for Mineralization Environment and Classification of the Deposit [J]. Mineralium Deposita, 2011, 46: 365-380. [15] Xue Chunji, Zeng Rong, Liu Shuwen, et al. Geo-logic, Fluid Inclusion and Isotopic Characteristics of the Jinding Zn-Pb Deposit, Western Yunnan, South China: A Review [J]. Ore Geology Reviews, 2007, 31: 337-359. [16] 刘家军,李朝阳,潘家永,等. 兰坪—思茅盆地砂页岩中铜矿床同位素地球化学[J]. 矿床地质,2000, 19(3): 223-234. Liu Jiajun, Li Chaoyang, Pan Jiayong, et al. Isotopic Geochemistry of Copper Deposits from Sandstone and Shale of Lanping-Simao Basin, Western Yunan [J]. Mineral Deposits, 2000, 19(3): 223-234. [17] 吴南平,蒋少涌,廖启林,等. 云南兰坪—思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究[J]. 岩石学报,2003,19(4): 799-807. Wu Nanping, Jiang Shaoyong, Liao Qilin, et al. Lead and Sulfur Isotope Geochemistry and the Ore Sources of the Vein-Type Copper Deposit in Lanping-Simao Basin, Yunan province [J]. Acta Petrologica Sinica, 2003, 19(4): 799-807. [18] Ji Hongbing, Li Chaoyang. Geochemistry of Jinman Copper Vein Deposit, West Yunnan Province, China: Ⅱ: Fluid Inclusion and Stable Isotope Geochemical Characteristics [J]. Chinese J Geochemy, 1998, 17(1): 81-90. [19] 阙梅英,程敦模,张立生,等. 兰坪—思茅盆地铜矿床[M]. 北京: 地质出版社,1998. Que Meiying, Cheng Dunmo, Zhang Lisheng, et al. Copper Deposits in Lanping-Simao Basin [M]. Beijing: Geological Publishing House, 1998. [20] 何明勤,宋焕斌,冉崇英,等. 云南兰坪金满铜矿床改造成因的证据[J]. 地质与勘探, 1998,34(2): 13-15. He Mingqin, Song Huanbin, Ran Congying, et al. Evidence for Transformed Genesis of the Jinman Copper Deposit in Lanping [J]. Geology and Prospecting, 1998, 34(2): 13-15. [21] 颜文,李朝阳. 一种新类型铜矿床的地球化学特征及其热水沉积成因[J]. 地球化学,1997,26(1): 54-63. Yan Wen, Li Chaoyang. Geochemical Characteristics and Hydrothermal Sedimentary Genesis of a New Type of Copper Deposits [J]. Geochimica, 1997, 26(1): 54-63. [22] Phillips G N, Powell J K. Link Between Gold Pro-vinces [J]. Economic Geology, 1993, 88: 1084-1098. [23] Rosenbaum J M, Zindler A, Rubenstone J L. Mantle Fluids: Evidence from Fluid Inclusions [J]. Geochimica et Cosmochimica Acta, 1996, 60: 3229-3252. [24] Diamond L W. Review of the Systematics of CO2-H2O Fluid Inclusions [J]. Lithos, 2001, 55: 69-99. [25] Wilkinson J J. FluidInclusions in Hydrothermal Ore Deposits[J]. Lithos, 2001, 55: 229-272. [26] 陈衍景,倪培,范宏瑞,等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报,2007,23(9): 2085-2108. Chen Yanjing, Ni Pei, Fan Hongrui, et al. Diagnostic Fluid Inclusions of Different Types of Hydrothermal Gold Deposits [J]. Acta Petrologica Sinica, 2007, 23(9): 2085-2108. [27] 张成江,倪师军,滕彦国,等. 兰坪盆地喜马拉雅期构造-岩浆活动与流体成矿的关系[J]. 矿物岩石,2000,20(2): 35-39. Zhang Chengjiang, Ni Shijun, Teng Yanguo, et al. Relationship Between Himalayan Tectono-Magmatic Activity and Mineralization in the Lanping Basin [J]. Mineral Petrologica, 2000, 20(2): 35-39. [28] 董方浏,莫宣学,侯增谦,等. 云南兰坪盆地喜马拉雅期碱性岩40Ar/39Ar年龄及地质意义[J]. 岩石矿物学杂志,2005,24(2): 103-109. Dong Fangliu, Mo Xuanxue, Hou Zengqian, et al. 40Ar/39Ar Ages of Himalayan Alkaline Rocks in the Lanping Basin, Yunnan and Their Geological Significance [J]. Acta Petrologica et Mineralogica, 2005, 24(2): 103-109. [29] 李文昌,潘桂棠,侯增谦,等. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社,2010. Li Wenchang, Pan Guitang, Hou Zengqian, et al. The Mineralization Theories and Techniques of the Arc-Basin System of "Three-River" Area of Southwest China [M]. Beijing: Geological Publishing House, 2010. [30] 徐启东,李建威. 云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带:流体包裹体和稳定同位素证据[J]. 矿床地质,2003, 22(4): 365-376. Xu Qidong, Li Jianwei. Ore-Forming Fluid Migration in Relation to Mineralization Zoning in Cu-Polymetallic Minralization District of Northern Lanping, Yunnan: Evidence from Fluid Inclusions and Stable Isotopes [J]. Mineral Deposits, 2003, 22(4): 365-376. [31] 何龙清,陈开旭,余凤鸣. 云南兰坪盆地推覆构造及其控矿作用[J]. 地质与勘探,2004, 40(4): 7-12. He Longqing, Chen Kaixu, Yu Fengming. Nappe Tectonics and Their Ore-Controlling of Lanping Basin in Yunan Province [J]. Geology and Prospecting, 2004, 40(4): 7-12. [32] 刘家军,李朝阳,张乾,等. 滇西金满铜矿床中木质结构及其成因意义[J]. 中国科学:D辑,2001, 31(2): 89-95. Liu Jiajun, Li Chaoyang, Zhang Qian, et al. Wood Textures in the Jinman Cu Deposit in Western Yunnan and Their Significance for Ore Genesis [J]. Science China:Series D, 2001, 31(2):89-95. [33] Su Wenchao, Heinrich C A, Pettke T, et al. Se-diment-Hosted Gold Deposits in Guizhou, China: Products of Wall-Rock Sulfidation by Deep Crustal Fluids [J]. Economic Geology, 2009, 104: 73-93. [34] Bodnar R J. Revised Equation and Table for Deter-mining the Freezing Point Depression of H2O-NaCl Solutions [J]. Geochimica et Cosmochimica Acta, 1993, 57: 683-684. [35] 叶庆同,胡云中,杨岳清. 三江地区区域地球化学背景和金银铅锌成矿作用[M]. 北京: 地质出版社,1992. Yie Qingtong, Hu Yunzhong, Yang Yueqing. The Regional Geochemical Background of Gold and Silver Lead-Zinc Mineralization of Sanjiang Region [M]. Beijing: Geological Publishing House, 1992. [36] 薛春纪,陈毓川,杨建民,等. 金顶铅锌矿床地质-地球化学[J]. 矿床地质,2002, 21(3): 270-277. Xue Chunji, Chen Yuchuan, Yang Jianmin, et al. Geology and Geochemistry of the Jinding Pb-Zn Deposit [J]. Mineral Deposits, 2002, 21(3): 270-277. [37] 徐晓春,谢巧勤,陆三明,等. 滇西兰坪盆地西缘铜矿床矿物流体包裹体研究[J]. 矿物学报,2005, 25(2): 170-176. Xu Xiaochun, Xie Qiaoqin, Lu Sanming, et al. Fluid Inclusion Ccharacteristics of Copper Deposits on the Western Border of Lanping basin, Yunan Province[J]. Acta Mineral Sinica, 2005, 25(2): 170-176. [38] 卢焕章,范宏瑞,倪培,等. 流体包裹体[M]. 北京: 科学出版社,2004. Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fuild Inclusions [M]. Beijing: Science Press, 2004. [39] Xue Chunji, Chi Guoxiang, Chen Yuchuan, et al. Two Fluid Systems in the Lanping Basin, Yunnan, China:Their Interaction and Implications for Mineralization [J]. Journal of Geochemical Exploration, 2006, 89: 436-439. [40] Kerrich R,Fyfe W S. The Gold-Carbonate Associa-tions: Source of CO2 and CO2 Fixation Reactions in Archean Lode Deposits [J]. Chemical Geology, 1981,33: 265-294. [41] 李文昌,尹光侯,余海军,等. 云南普朗斑岩型铜矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版),2013,43(5): 1436-1447. Li Wenchang, Yin Guanghou, Yu Haijun, et al. Characteristics of the Ore-Forming Fluid and Genesis of the Pulang Copper Deposit in Yunnan Province [J]. Journal of Jilin University (Earth Science Edition), 2013, 43(5): 1436-1447. [42] 薛建玲,李胜荣,孙文燕,等. 胶东邓格庄金矿床流体包裹体氦、氩同位素组成及其成矿物质来源示踪[J]. 吉林大学学报(地球科学版),2013,43(2): 400-414. Xue Jianling, Li Shengrong, Sun Wenyan, et al. Helium and Argon Isotopic Composition in Fluid Inclusions and the Source of Ore-Forming Materials of Denggezhuang Gold Deposit in Jiaodong Peninsula [J]. Journal of Jilin University (Earth Science Edition), 2013, 43(2): 400-414. [43] 张锦让,温汉捷,邹志超,等. 云南兰坪盆地西缘脉状铜矿床富CO2流体来源的He和Ar同位素证据[J]. 地球化学,2015,44(2): 167-177. Zhang Jinrang, Wen Hanjie, Zou Zhichao, et al. Origin of CO2-Rich Ore-Forming Fluids in the Vein-Type Cu Deposits in Western Lanping Basin, Yunnan: Evidence from He and Ar Isotopes [J]. Geochimica, 2015, 44(2): 167-177. |
[1] | 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084. |
[2] | 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733. |
[3] | 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710. |
[4] | 王可勇, 付丽娟, 韦烈民, 王志高. 辽宁榛子沟铅锌矿床热液叠加成矿作用特征及成矿流体来源[J]. 吉林大学学报(地球科学版), 2016, 46(1): 80-90. |
[5] | 贾福聚, 燕永锋, 伍伟, 刘晓玮. 云南老君山锡多金属成矿区硫、铅、氢、氧同位素地球化学[J]. 吉林大学学报(地球科学版), 2016, 46(1): 105-118. |
[6] | 朱志军, 郭福生, 刘腾, 刘远超. 云南兰坪盆地古近系细碎屑岩地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1631-1641. |
[7] | 张志辉, 张达, 狄永军, 李兴俭, 阙朝阳, 马先平, 杜泽忠. 安徽铜陵焦冲金矿床成矿流体特征及成矿机制[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1657-1666. |
[8] | 王承洋, 王可勇, 周向斌, 李文, 黄广环, 李剑锋, 张雪冰, 于琪. 内蒙古东山湾钨钼多金属矿床成矿流体地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2015, 45(3): 759-771. |
[9] | 王力,潘忠翠,孙丽伟. 山东莱州新城金矿床流体包裹体[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1166-1176. |
[10] | 熊索菲,姚书振,宫勇军,何谋春,祁冬梅,向鹏. 河南祁雨沟金矿临界-超临界包裹体特征及成矿流体演化[J]. 吉林大学学报(地球科学版), 2014, 44(1): 120-133. |
[11] | 李文昌,尹光侯,余海军,薛顺荣,王可勇,王承洋,王文旭. 云南普朗斑岩型铜矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1436-1447. |
[12] | 朱江,吕新彪,莫亚龙,曹晓峰,陈超. 甘肃拾金坡金矿床成因:来自40Ar/39Ar定年、成矿流体及H-O-S同位素证据[J]. 吉林大学学报(地球科学版), 2013, 43(2): 427-439. |
[13] | 李永胜, 赵财胜, 吕志成, 严光生, 甄世民. 西藏甲玛铜多金属矿床流体包裹体特征及地质意义[J]. J4, 2011, 41(1): 122-136. |
[14] | 王可勇, 卿敏, 边红业, 万多, 孙丰月, 刘正宏, 纪兆家. 辽宁五龙金矿床地质特征及成矿流体地球化学性质[J]. J4, 2010, 40(3): 557-564. |
[15] | 孙丰月,王 力. 内蒙拜仁达坝银铅锌多金属矿床成矿条件[J]. J4, 2008, 38(3): 376-0383. |
|