吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (6): 1772-1780.doi: 10.13278/j.cnki.jjuese.201506117
赵建如1,2, 初凤友1,2, 金路3, 杨克红1,2, 葛倩1,2
Zhao Jianru1,2, Chu Fengyou1,2, Jin Lu3, Yang Kehong1,2, Ge Qian1,2
摘要:
笔者应用因子克里格分析方法,研究了珠江口西部海域388个表层沉积物中7种重金属元素Cd, Ni,Cu,Zn,Pb,Cr和As的空间结构特征,识别并分离了重金属元素不同尺度的空间主成分及其分布特征,探讨了不同空间尺度重金属的物源及控制因素。结果显示,研究区7种重金属元素在空间上存在块金尺度、局部尺度(变程为60 km的球状结构)和区域尺度(变程为160 km的球状结构)3种尺度的空间变化。以迭代算法模拟了研究区重金属元素线性协同区域化模型。根据不同尺度上区域化因子的主成分得分分布特征可知:局部尺度上,F1因子(Zn,Cr,Ni,Cu)和F2因子(As)的高值区表现为"牛眼"状局部特征,并分布在陆地沿海的河口或者港湾区,指示了可能受人为污染成分影响的重金属区域。其中,雷州半岛东部沿海是最可能的重金属污染区,其空间分布主要受控于局部的地形、海流等因素。F2因子不同于F1的空间分布,主要在于As不同于Zn,Cr,Ni,Cu等的地球化学行为。区域尺度上,F1(Zn,Cr,Ni)和F2(As)因子主要反映了不同陆源母岩物质的影响。Zn,Cr,Ni等主要源于华南大陆陆源母岩物质,而As主要受到海南岛陆源母岩物质的控制。F1和F2因子得分高值区整体上表现为NNE向自陆地向较深海域延伸的"片状"分布特征,推测其主要受到海平面变化及NNE向区域性海洋环流的控制。
中图分类号:
[1] Yu Ruilian, Yuan Xing, Zhao Yuanhui, et al. Heavy Metal Pollution in Intertidal Sediments from Quanzhou Bay[J]. China Environ Sci, 2008, 20:664-669.[2] Pan Ke, Wang Wenxiong. Trace Metal Contamination in Estuarine and Coastal Environments in China[J]. Sci Total Environ, 2012, 421:3-16.[3] Wang Shuailong, Xu Xiangrong, Sun Yuxin, et al. Heavy Metal Pollution in Coastal Areas of South China: A Review[J]. Mar Pollut Bull, 2013, 76:7-15.[4] Varol M, Sen B. Assessment of Nutrient and Heavy Metal Contamination in Surface Water and Sediments of the Upper Tigris River[J]. Turkey Catena, 2012, 92: 1-10.[5] Gu Yangguang, Wang Zhaohui, Lu Songhui. Multivariate Statistical and GIS-Based Approach to Identify Source of Anthropogenic Impacts on Metallic Elements in Sediments from the Mid-Guangdong Coasts[J]. Environmental Pollution, 2012,163:248-255.[6] Dou Yanguang, Li Jun, Zhao Jingtao, et al. Distribution, Enrichment and Source of Heavy Metals in Surface Sediments of the Eastern Beibu Bay,South China Sea[J].Marine Pollution Bulletin, 2013,67:137-145.[7] Donato S, Marija R, Annamaria C, et al. Assessing Heavy Metal Contamination in Soils of the Zagreb Region (Northwest Croatia) Using Multivariate Geostatistics[J]. Catena, 2010, 80:182-194.[8] Lu Jianshu, Liu Yang, Zhang Zulu. Factorial Kriging and Stepwise Regression Approach to Identify Environmental Factors Influencing Spatial Multi-Scale Variability of Heavy Metals in Soils[J]. Journal of Hazardous Materials, 2013,261:387-397.[9] Hu Bangqi, Cui Ruyong, Li Jun. Occurrence and Distribution of Heavy Metals in Surface Sediments of the Changhua River Estuary and Adjacent Shelf (Hainan Island)[J]. Mar Pollut Bull,2013,76(1/2):400-405.[10] 甘华阳,梁开,郑志昌.珠江口表层沉积物中微量元素地球化学[J].海洋地质与第四纪地质,2010,30(4):31-39. Gan Huayang, Liang Kai, Zheng Zhichang. Trace Elements Geochemical Characteristics of the Surface Sediments of Pear River Estuary[J]. Marine Geology & Quaternary Geology, 2010, 30(4):31-39.[11] 王增焕,林钦,李纯厚,等.珠江口重金属变化特征与生态评价[J].中国水产科学,2004,1(3):214-219. Wang Zenghuan, Lin Qin, Li Chunhou, et al.Variation Features and Ecological Assessment of Heavy Metals from Pear River Estuary[J]. Journal of Fisher Sciences of China, 2004,1(3):214-219.[12] 陈康,方展强,安东,等.沿岸水域表层沉积物中重金属含量分布及污染评价[J].应用海洋学学报,2013,32(1):20-28. Chen Kang,Fang Zhanqiang,An Dong,et al. Content Distribution and Pollution Assessment on Heavy Metals in Surface Sediment from the Pearl River Estuary Coastal Waters[J]. Journal of Applied Oceanography, 2013,32(1):20-28.[13] 陈耀泰.珠江入海泥沙的浓度和成分特征及其沉积扩散趋势[J]. 中山大学学报:自然科学版,1991,30(1): 105-113. Chen Yaotai.On Features of Density and Ingredient as well as Trend of the Deposit and the Spread of the Sediment from Pearl River into the Sea[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,1991, 30(1): 105-113.[14] 许冬.北部湾东部末次冰消期以来的沉积物记录集现代沉积格局的形成[D].青岛:中国科学院海洋研究所,2014. Xu Dong. Sedimentary Records Since Last Deglaciation and the Formation of Modern Sedimentary Pattern in Eastern Beibu Gulf[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2014.[15] Fang Guohong, Fang Wendong, Fang Yue, et al. A Survey of Studies on the South China Sea Upper Ocean Circulation[J]. Acta Oceanography Taiwanica, 1998, 37 (1): 1-16.[16] Goovaerts P. Factorial KrigingAnalysis: A Useful Tool for Exploring the Structure of Multivariate Spatial Soil Information[J]. Journal of Soil Science , 1992, 43(4): 597-619.[17] Wackernagel H.CokrigingVersus Kriging in Regio-nalized Multivariate Data Analysis [J]. Geoderma, 1994, 62: 437-444.[18] Castrignanò A, Giugliarini L, Risaliti R, et al. Study of Spatial Relationships Among Some Soil Physico-Chemical Properties of a Field in Central Italy Using Multivariate Geostatistics[J]. Geoderma, 2000, 97: 39-60.[19] Olive M A. Geostatistics and Its Application to Soil Science[J]. Soil Use and Management, 1987, 3(1): 8-20.[20] Xavier Emery. Iterative Algorithms for Fitting a Linear Model of Coregionalization[J]. Computers & Geosciences, 2010,36:1150-1160.[21] Webster R. Quantitative Spatial Analysis of Soil in the Field[J]. Advance in Soil Science, 1985,3:1-70.[22] GB 18668-2002海洋沉积物质量[S].北京:中国标准出版社,2002. GB 18668-2002. Marine Sediment Quality[S]. Beijing:Standards Press of China, 2002.[23] 马锡年,李全生,沈万仁,等.渤海湾表层沉积物中的砷与铁铝锰等元素的关系[J].海洋与湖沼,1984,15(5):448-456. Ma Xinian, Li Quansheng, Shen Wanren, et al. The Relationships Between Arsenic and Other Elements (Iron,Aluminum,Manganese etc.)in Surface Sediments of Bohai Bay[J]. Oceanologia et Limnologia Sinica, 1984,15(5):448-456.[24] Liao Xiangui. Geochemical Characteristics of Arsenic in Sediments from Bohai Gulf[J]. Acta Oceanologoca Sinica, 1986,5 (2):215-219.[25] 刘昭蜀, 赵焕庭, 范时清, 等. 南海地质[M].北京:科学出版社, 2002: 351. Liu Zhaoshu,Zhao Huanting,Fan Shiqing,et al. Geology of South China Sea[M].Beijing: Science Press, 2002: 351.[26] Alloway B J. Heavy Metals in Soils[M]. London: Blackie Academic & Professional,1995:368.[27] 马荣林,杨奕,何玉生.海南岛南渡江近岸河口沉积物稀土元素地球化学[J].中国稀土学报,2010, 28(1):110-114. Ma Ronglin,Yang Yi,He Yusheng,et al.Geochemistry of Rare Earth Elements in Coastal and Estuarial Areas of Hainan's Nandu River[J]. Journal of the Chinese Rare Earth Society, 2010,28(1):110-114.[28] 廖香俊,王平安,丁式江.海南岛主要成矿系列与矿床成矿规律研究[J].地质力学学报, 2005,11(2):187-194. Liao Xiangjun, Wang Pingan, Ding Shijiang. Main Metallogenic Series and Metallogenic Characteristics on Hainan Island[J]. Journal of Geomechamics, 2005,11(2):187-194.[29] 丁式江,黄香定,李中坚,等.海南抱伦金矿地质特征及其成矿作用[J].中国地质, 2001,28(5):28-35. Ding Shijiang, Huang Xiangding, Li Zhongjian, et al. Geological Characteristics and Mineralization of Baolun Gold Mine in Hainan[J].Geology in China, 2001,28(5):28-35.[30] 肖细元,陈同斌,廖晓勇,等.中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究,2008,27(1):201-212. Xiao Xiyuan, Chen Tongbin, Liao Xiaoyong, et al. Regional Distribution of Arsenic Contained Minerals and Arsenic Pollution in China[J]. Geographical Research, 2008,27(1):201-212. |
[1] | 代杰瑞, 喻超, 张明杰, 董建, 胡雪平. 淄博市区大气颗粒物重金属元素分布特征及其来源分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1201-1211. |
[2] | 徐军, 郝立波, 赵新运, 赵玉岩, 马成有, 魏俏巧, 吴超, 石厚礼. 松花江上游表层沉积物中重金属元素时空分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 854-862. |
[3] | 陆继龙, 刘奇志, 王春珍, 蔡波, 郝立波, 尹业长, 赵玉岩. 二道松花江沉积物重金属特征及其潜在生态风险[J]. 吉林大学学报(地球科学版), 2018, 48(2): 566-573. |
[4] | 李永涛, 郭高山, 顾延生, 韦林, 何思远. 钢厂周边污染土壤的电性与磁性特征及其环境意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1543-1551. |
[5] | 周长松, 邹胜章, 李录娟, 朱丹尼, 卢海平, 夏日元. 岩溶区典型石灰土Cd形态指示意义及风险评价——以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562. |
[6] | 曹玲珑,王建华,黄楚光,倪志鑫,金钢雄,瓦西拉里,陈慧娴. 大亚湾表层沉积物重金属元素形态特征、控制因素及风险评价分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1988-1999. |
[7] | 陈圣波,李鑫龙,陈磊. 基于地面实测光谱的水系沉积物重金属含量反演[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1388-1394. |
[8] | 李鱼,王檬,张琛,高茜. 基于分式析因及最佳子集回归的多种污染物复合污染特征--阿特拉津与多种污染物在松花江沉积物上的吸附效应[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1595-1602. |
[9] | 王博,夏敦胜,贾佳,余晔,许淑婧. 中国西北地区典型钢铁工业城市表土重金属污染的环境磁学响应[J]. 吉林大学学报(地球科学版), 2013, 43(3): 962-973. |
[10] | 魏华玲,周国华,孙彬彬,刘占元,曾道明. 浙江省东部土壤元素地球化学特征及意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 564-572. |
[11] | 汤洁, 李娜, 李海毅, 卞建民, 李昭阳, 崔玉军. 大庆市大气干湿沉降重金属元素通量及来源[J]. J4, 2012, 42(2): 507-513. |
[12] | 郭平, 宋杨, 谢忠雷, 张迎新, 李悦铭, 张赛. 冻融作用对黑土和棕壤中Pb、Cd吸附/解吸特征的影响[J]. J4, 2012, 42(1): 226-232. |
[13] | 黄冠星, 孙继朝, 张英, 刘景涛, 张玉玺, 荆继红. 珠江三角洲污灌区地下水重金属含量及其相互关系[J]. J4, 2011, 41(1): 228-234. |
[14] | 李湘凌, 张颖慧, 杨善谋, 袁峰, 周涛发. 合肥义城地区土壤重金属污染评价中典型插值方法的对比[J]. J4, 2011, 41(1): 222-227. |
[15] | 郝立波, 孙立吉, 陆继龙, 孙淑梅, 潘志恒, 赵玉岩. 第二松花江中上游悬浮物重金属元素分布特征[J]. J4, 2010, 40(2): 327-330. |
|