吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (6): 1772-1780.doi: 10.13278/j.cnki.jjuese.201506117

• 地质与资源 • 上一篇    下一篇

珠江口西部海域表层沉积物重金属元素多尺度空间变化特征

赵建如1,2, 初凤友1,2, 金路3, 杨克红1,2, 葛倩1,2   

  1. 1. 国家海洋局海底科学重点实验室, 杭州 310012;
    2. 国家海洋局第二海洋研究所, 杭州 310012;
    3. 浙江大学地球科学学院, 杭州 310013
  • 收稿日期:2015-03-01 发布日期:2015-11-26
  • 作者简介:赵建如(1982),女,助理研究员,主要从事海洋沉积地球化学研究,E-mail:zhaojianru@sio.org.cn。
  • 基金资助:

    国家自然科学基金项目(41476050,41106047,41476047,41106045);专项国际合作项目(GASI-04-01-02,GAST-GEOGE-03);国家海洋局第二海洋研究所基本科研业务费专项(JG1204,JG1316);机器人学国家重点实验室开放基金(2013-O14)

Spatial Multi-Scale Variability of Heavy Metals in Surface Sediments of Western Pearl River Estuary

Zhao Jianru1,2, Chu Fengyou1,2, Jin Lu3, Yang Kehong1,2, Ge Qian1,2   

  1. 1. Key Laboratory of Submarine Geosciences, SOA, Hangzhou 310012, China;
    2. The Second Institute of Oceanography, SOA, Hangzhou 310012, China;
    3. School of Earth Sciences, Zhejiang University, Hangzhou 310013, China
  • Received:2015-03-01 Published:2015-11-26

摘要:

笔者应用因子克里格分析方法,研究了珠江口西部海域388个表层沉积物中7种重金属元素Cd, Ni,Cu,Zn,Pb,Cr和As的空间结构特征,识别并分离了重金属元素不同尺度的空间主成分及其分布特征,探讨了不同空间尺度重金属的物源及控制因素。结果显示,研究区7种重金属元素在空间上存在块金尺度、局部尺度(变程为60 km的球状结构)和区域尺度(变程为160 km的球状结构)3种尺度的空间变化。以迭代算法模拟了研究区重金属元素线性协同区域化模型。根据不同尺度上区域化因子的主成分得分分布特征可知:局部尺度上,F1因子(Zn,Cr,Ni,Cu)和F2因子(As)的高值区表现为"牛眼"状局部特征,并分布在陆地沿海的河口或者港湾区,指示了可能受人为污染成分影响的重金属区域。其中,雷州半岛东部沿海是最可能的重金属污染区,其空间分布主要受控于局部的地形、海流等因素。F2因子不同于F1的空间分布,主要在于As不同于Zn,Cr,Ni,Cu等的地球化学行为。区域尺度上,F1(Zn,Cr,Ni)和F2(As)因子主要反映了不同陆源母岩物质的影响。Zn,Cr,Ni等主要源于华南大陆陆源母岩物质,而As主要受到海南岛陆源母岩物质的控制。F1F2因子得分高值区整体上表现为NNE向自陆地向较深海域延伸的"片状"分布特征,推测其主要受到海平面变化及NNE向区域性海洋环流的控制。

关键词: 多尺度空间变化, 重金属, 因子克里格分析, 珠江口西部海域

Abstract:

A factorial kriging analysis was conducted on seven heavy metal elements, Cd, Ni,Cu,Zn,Pb,Cr,As, of 388 surface samples collected from western Pearl River Estuary to study the spatial structure characteristics of the heavy metal elements, identify and separate spatial principal components at different spatial scales, and discuss the provenance of heavy metal elements and the influencing factors.The results show that the heavy metals exist spatially in three scales: nugget scale, spherical structure with a range of 60 km (local scale), and spherical structure with a range of 160 km (regional scale).According to the distribution of the regional factor(F1 and F2) score, high-value areas of F1(Zn,Cr,Ni,Cu)and F2(As)at local scale reflect "bull-eye like" distribution in estuary and harbor of coastal land. This suggests the potential anthropogenic pollution area of Zn,Cr,Ni,Cu and As. The eastern coast of Leizhou Peninsula is most likely the area of heavy metal pollution. The spatial distribution of the heavy metal elements at local scale is dominated by the local terrain or current; and their different spatial distribution between As and Zn,Cr,Ni,Cu is due to their different element geochemical behavior. The regional factors F1(Zn, Cr, Ni)and F2(As)at regional scale indicate the influence of terrigenous parent rock,in which Zn,Cr,Ni are derived primarily from the parent rock from the mainland of South China;while As is derived primarily from the parent rock of Hainan Island.The high-value areas of F1 and F2 at regional scale show "slice-like" distribution extending from coast towards deeper sea overall in NNE direction; which is due to sea-level changes and the regional ocean circulation in NNE direction.

Key words: spatial multi-scale variability, heavy metals, factorial kriging analysis, western Pearl River Estuary

中图分类号: 

  • P595

[1] Yu Ruilian, Yuan Xing, Zhao Yuanhui, et al. Heavy Metal Pollution in Intertidal Sediments from Quanzhou Bay[J]. China Environ Sci, 2008, 20:664-669.

[2] Pan Ke, Wang Wenxiong. Trace Metal Contamination in Estuarine and Coastal Environments in China[J]. Sci Total Environ, 2012, 421:3-16.

[3] Wang Shuailong, Xu Xiangrong, Sun Yuxin, et al. Heavy Metal Pollution in Coastal Areas of South China: A Review[J]. Mar Pollut Bull, 2013, 76:7-15.

[4] Varol M, Sen B. Assessment of Nutrient and Heavy Metal Contamination in Surface Water and Sediments of the Upper Tigris River[J]. Turkey Catena, 2012, 92: 1-10.

[5] Gu Yangguang, Wang Zhaohui, Lu Songhui. Multivariate Statistical and GIS-Based Approach to Identify Source of Anthropogenic Impacts on Metallic Elements in Sediments from the Mid-Guangdong Coasts[J]. Environmental Pollution, 2012,163:248-255.

[6] Dou Yanguang, Li Jun, Zhao Jingtao, et al. Distribution, Enrichment and Source of Heavy Metals in Surface Sediments of the Eastern Beibu Bay,South China Sea[J].Marine Pollution Bulletin, 2013,67:137-145.

[7] Donato S, Marija R, Annamaria C, et al. Assessing Heavy Metal Contamination in Soils of the Zagreb Region (Northwest Croatia) Using Multivariate Geostatistics[J]. Catena, 2010, 80:182-194.

[8] Lu Jianshu, Liu Yang, Zhang Zulu. Factorial Kriging and Stepwise Regression Approach to Identify Environmental Factors Influencing Spatial Multi-Scale Variability of Heavy Metals in Soils[J]. Journal of Hazardous Materials, 2013,261:387-397.

[9] Hu Bangqi, Cui Ruyong, Li Jun. Occurrence and Distribution of Heavy Metals in Surface Sediments of the Changhua River Estuary and Adjacent Shelf (Hainan Island)[J]. Mar Pollut Bull,2013,76(1/2):400-405.

[10] 甘华阳,梁开,郑志昌.珠江口表层沉积物中微量元素地球化学[J].海洋地质与第四纪地质,2010,30(4):31-39. Gan Huayang, Liang Kai, Zheng Zhichang. Trace Elements Geochemical Characteristics of the Surface Sediments of Pear River Estuary[J]. Marine Geology & Quaternary Geology, 2010, 30(4):31-39.

[11] 王增焕,林钦,李纯厚,等.珠江口重金属变化特征与生态评价[J].中国水产科学,2004,1(3):214-219. Wang Zenghuan, Lin Qin, Li Chunhou, et al.Variation Features and Ecological Assessment of Heavy Metals from Pear River Estuary[J]. Journal of Fisher Sciences of China, 2004,1(3):214-219.

[12] 陈康,方展强,安东,等.沿岸水域表层沉积物中重金属含量分布及污染评价[J].应用海洋学学报,2013,32(1):20-28. Chen Kang,Fang Zhanqiang,An Dong,et al. Content Distribution and Pollution Assessment on Heavy Metals in Surface Sediment from the Pearl River Estuary Coastal Waters[J]. Journal of Applied Oceanography, 2013,32(1):20-28.

[13] 陈耀泰.珠江入海泥沙的浓度和成分特征及其沉积扩散趋势[J]. 中山大学学报:自然科学版,1991,30(1): 105-113. Chen Yaotai.On Features of Density and Ingredient as well as Trend of the Deposit and the Spread of the Sediment from Pearl River into the Sea[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,1991, 30(1): 105-113.

[14] 许冬.北部湾东部末次冰消期以来的沉积物记录集现代沉积格局的形成[D].青岛:中国科学院海洋研究所,2014. Xu Dong. Sedimentary Records Since Last Deglaciation and the Formation of Modern Sedimentary Pattern in Eastern Beibu Gulf[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2014.

[15] Fang Guohong, Fang Wendong, Fang Yue, et al. A Survey of Studies on the South China Sea Upper Ocean Circulation[J]. Acta Oceanography Taiwanica, 1998, 37 (1): 1-16.

[16] Goovaerts P. Factorial KrigingAnalysis: A Useful Tool for Exploring the Structure of Multivariate Spatial Soil Information[J]. Journal of Soil Science , 1992, 43(4): 597-619.

[17] Wackernagel H.CokrigingVersus Kriging in Regio-nalized Multivariate Data Analysis [J]. Geoderma, 1994, 62: 437-444.

[18] Castrignanò A, Giugliarini L, Risaliti R, et al. Study of Spatial Relationships Among Some Soil Physico-Chemical Properties of a Field in Central Italy Using Multivariate Geostatistics[J]. Geoderma, 2000, 97: 39-60.

[19] Olive M A. Geostatistics and Its Application to Soil Science[J]. Soil Use and Management, 1987, 3(1): 8-20.

[20] Xavier Emery. Iterative Algorithms for Fitting a Linear Model of Coregionalization[J]. Computers & Geosciences, 2010,36:1150-1160.

[21] Webster R. Quantitative Spatial Analysis of Soil in the Field[J]. Advance in Soil Science, 1985,3:1-70.

[22] GB 18668-2002海洋沉积物质量[S].北京:中国标准出版社,2002. GB 18668-2002. Marine Sediment Quality[S]. Beijing:Standards Press of China, 2002.

[23] 马锡年,李全生,沈万仁,等.渤海湾表层沉积物中的砷与铁铝锰等元素的关系[J].海洋与湖沼,1984,15(5):448-456. Ma Xinian, Li Quansheng, Shen Wanren, et al. The Relationships Between Arsenic and Other Elements (Iron,Aluminum,Manganese etc.)in Surface Sediments of Bohai Bay[J]. Oceanologia et Limnologia Sinica, 1984,15(5):448-456.

[24] Liao Xiangui. Geochemical Characteristics of Arsenic in Sediments from Bohai Gulf[J]. Acta Oceanologoca Sinica, 1986,5 (2):215-219.

[25] 刘昭蜀, 赵焕庭, 范时清, 等. 南海地质[M].北京:科学出版社, 2002: 351. Liu Zhaoshu,Zhao Huanting,Fan Shiqing,et al. Geology of South China Sea[M].Beijing: Science Press, 2002: 351.

[26] Alloway B J. Heavy Metals in Soils[M]. London: Blackie Academic & Professional,1995:368.

[27] 马荣林,杨奕,何玉生.海南岛南渡江近岸河口沉积物稀土元素地球化学[J].中国稀土学报,2010, 28(1):110-114. Ma Ronglin,Yang Yi,He Yusheng,et al.Geochemistry of Rare Earth Elements in Coastal and Estuarial Areas of Hainan's Nandu River[J]. Journal of the Chinese Rare Earth Society, 2010,28(1):110-114.

[28] 廖香俊,王平安,丁式江.海南岛主要成矿系列与矿床成矿规律研究[J].地质力学学报, 2005,11(2):187-194. Liao Xiangjun, Wang Pingan, Ding Shijiang. Main Metallogenic Series and Metallogenic Characteristics on Hainan Island[J]. Journal of Geomechamics, 2005,11(2):187-194.

[29] 丁式江,黄香定,李中坚,等.海南抱伦金矿地质特征及其成矿作用[J].中国地质, 2001,28(5):28-35. Ding Shijiang, Huang Xiangding, Li Zhongjian, et al. Geological Characteristics and Mineralization of Baolun Gold Mine in Hainan[J].Geology in China, 2001,28(5):28-35.

[30] 肖细元,陈同斌,廖晓勇,等.中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究,2008,27(1):201-212. Xiao Xiyuan, Chen Tongbin, Liao Xiaoyong, et al. Regional Distribution of Arsenic Contained Minerals and Arsenic Pollution in China[J]. Geographical Research, 2008,27(1):201-212.

[1] 代杰瑞, 喻超, 张明杰, 董建, 胡雪平. 淄博市区大气颗粒物重金属元素分布特征及其来源分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1201-1211.
[2] 徐军, 郝立波, 赵新运, 赵玉岩, 马成有, 魏俏巧, 吴超, 石厚礼. 松花江上游表层沉积物中重金属元素时空分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 854-862.
[3] 陆继龙, 刘奇志, 王春珍, 蔡波, 郝立波, 尹业长, 赵玉岩. 二道松花江沉积物重金属特征及其潜在生态风险[J]. 吉林大学学报(地球科学版), 2018, 48(2): 566-573.
[4] 李永涛, 郭高山, 顾延生, 韦林, 何思远. 钢厂周边污染土壤的电性与磁性特征及其环境意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1543-1551.
[5] 周长松, 邹胜章, 李录娟, 朱丹尼, 卢海平, 夏日元. 岩溶区典型石灰土Cd形态指示意义及风险评价——以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562.
[6] 曹玲珑,王建华,黄楚光,倪志鑫,金钢雄,瓦西拉里,陈慧娴. 大亚湾表层沉积物重金属元素形态特征、控制因素及风险评价分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1988-1999.
[7] 陈圣波,李鑫龙,陈磊. 基于地面实测光谱的水系沉积物重金属含量反演[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1388-1394.
[8] 李鱼,王檬,张琛,高茜. 基于分式析因及最佳子集回归的多种污染物复合污染特征--阿特拉津与多种污染物在松花江沉积物上的吸附效应[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1595-1602.
[9] 王博,夏敦胜,贾佳,余晔,许淑婧. 中国西北地区典型钢铁工业城市表土重金属污染的环境磁学响应[J]. 吉林大学学报(地球科学版), 2013, 43(3): 962-973.
[10] 魏华玲,周国华,孙彬彬,刘占元,曾道明. 浙江省东部土壤元素地球化学特征及意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 564-572.
[11] 汤洁, 李娜, 李海毅, 卞建民, 李昭阳, 崔玉军. 大庆市大气干湿沉降重金属元素通量及来源[J]. J4, 2012, 42(2): 507-513.
[12] 郭平, 宋杨, 谢忠雷, 张迎新, 李悦铭, 张赛. 冻融作用对黑土和棕壤中Pb、Cd吸附/解吸特征的影响[J]. J4, 2012, 42(1): 226-232.
[13] 黄冠星, 孙继朝, 张英, 刘景涛, 张玉玺, 荆继红. 珠江三角洲污灌区地下水重金属含量及其相互关系[J]. J4, 2011, 41(1): 228-234.
[14] 李湘凌, 张颖慧, 杨善谋, 袁峰, 周涛发. 合肥义城地区土壤重金属污染评价中典型插值方法的对比[J]. J4, 2011, 41(1): 222-227.
[15] 郝立波, 孙立吉, 陆继龙, 孙淑梅, 潘志恒, 赵玉岩. 第二松花江中上游悬浮物重金属元素分布特征[J]. J4, 2010, 40(2): 327-330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!