吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 552-562.doi: 10.13278/j.cnki.jjuese.201602205

• 地质工程与环境工程 • 上一篇    下一篇

岩溶区典型石灰土Cd形态指示意义及风险评价——以桂林毛村为例

周长松, 邹胜章, 李录娟, 朱丹尼, 卢海平, 夏日元   

  1. 中国地质科学院岩溶地质研究所/国土资源部岩溶动力学重点实验室/岩溶生态系统与石漠化治理重点实验室, 广西桂林 541004
  • 收稿日期:2015-06-29 发布日期:2016-03-26
  • 作者简介:周长松(1987-),男,研究实习员,硕士,主要从事水文地质与环境地质方面的研究,E-mail:zhouchangsongsx@163.com
  • 基金资助:

    国土资源部地质调查项目(1212011121166,121237131301101,2002371120029,1212011220959);国家重点基础研究发展计划(国家"973"计划)项目(2011CB201001);中国地质科学院岩溶地质研究所基本科研业务费项目(2014030,2015016)

Implications of Cadmium Forms and Risk Assessment of Calcareous Soil in Karst Area: A Case Study of Maocun in Guilin, China

Zhou Changsong, Zou Shengzhang, Li Lujuan, Zhu Danni, Lu Haiping, Xia Riyuan   

  1. Institute of Karst Geology, Chinese Academy of Geological Sciences/Karst Dynamics Laboratory, MLR/Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Guilin 541004, Guangxi, China
  • Received:2015-06-29 Published:2016-03-26
  • Supported by:

    Supported by Geological Survey Project of Ministry of Land and Resources(1212011121166,121237131301101,2002371120029,1212011220959),National Key Basic Research Program Project (2011CB201001),and Basic Research Projects of the Institute of Karst Geology, and Chinese Academy of Geological Sciences (2014030,2015016)

摘要:

为了了解岩溶区石灰土中重金属Cd形态分配特征及富集情况,在桂林毛村采集了3种处于不同发育阶段的黑色、棕色和红色石灰土进行研究。通过原子光谱仪测试了Cd质量分数,运用改进的Tessier分析法测定了3种石灰土中Cd的可交换态(EXC)、碳酸盐结合态(CAB)、铁锰氧化物结合态(OXI)、有机结合态(ORG)、残渣态(RES)5种形态,并对其指示意义及风险进行了分析与评价,结果表明,3种石灰土中Cd质量分数从大到小依次为早期黑色石灰土、中期棕色石灰土、晚期红色石灰土。形态测试结果表明:黑色石灰土和棕色石灰土中Cd形态以铁锰氧化态和残渣态为主,占土壤Cd质量分数的63%以上,且5种形态质量分数从大到小顺序均为铁锰氧化态、残渣态、可交换态、碳酸盐结合态、有机结合态;红色石灰土Cd形态以残渣态为主,占土壤Cd质量分数的76%,形态分配特征从大到小为残渣态、铁锰氧化态、可交换态、碳酸盐结合态、有机结合态。Cd稳定度和富集程度评价结果表明:在黑色石灰土、棕色石灰土和红色石灰土中Cd稳定度逐渐减小,环境二次释放风险逐渐降低;富集程度从大到小依次为黑色石灰土、棕色石灰土、红色石灰土,其中Cd在黑色石灰土中呈显著富集状态,在棕色石灰土中呈中度富集状态,在红色石灰土中呈轻微富集状态。潜在生态风险评价和健康风险评价结果表明,由早期黑色石灰土到中期棕色石灰土和晚期红色石灰土,土壤中Cd的生态风险和健康风险均逐渐降低。研究结果可为岩溶区土壤重金属Cd污染修复与治理提供基础数据。

关键词: 石灰土, 镉, 重金属, 形态, 岩溶区, 风险

Abstract:

In order to grasp the forms and accumulation of cadmium in the soils of karst area, three calcareous soil samples collected from Maocun, Guilin, were analyzed.Their cadmium concentration was tested by an atomic spectrometer, and the cadmium was tested by an improved. Tessier assay, for its different existing status as it is in the five forms of EXC(exchangeable), CAB(carbonate combined), OXI(Fe-Mn oxide combined), ORG(organic combined) and RES(residual). Moreover, its risk to the environment and implications were analyzed and evaluated. The results showed that the relative cadmium contents of the three calcareous soil are:Black calcareous soil> Brown calcareous soil> Red calcareous soil;Cadmium in Black calcareous soil and Brown calcareous soil present mainly in Fe-Mn oxide combined form, and the chance to find it in other forms is reduced by the order of OXI> RES> EXC> CAB> ORG.In Red calcareous soil, the relative contents of cadmium in different chemical forms reduced in the order of RES> OXI> EXC> CAB> ORG. The results of RSP and RAC showed that cadmium contents of the three calcareous soil are:Black calcareous soil> Brown calcareous soil> Red calcareous soil. The ecological and health risks of cadmium of the three calcareous soil are:Black calcareous soil> Brown calcareous soil> Red calcareous soil. The results provide basic data for remediation and control of cadmium in karst area.

Key words: calcareous soil, cadmium, heavy metal, forms, karst area, risk

中图分类号: 

  • S512

[1] 裴建国,梁茂珍,陈阵.西南岩溶石山地区岩溶地下水系统划分及其主要特征值统计[J].中国岩溶,2008,27(1):6-10. Pei Jianguo,Liang Maozhen,Chen Zhen.Classification of Karst Groundwater System and Statistics of the Main Characteristic Values in Southwest China Karst Mountain[J].CarsologicaSinica,2008,27(1):6-10.

[2] 魏华玲,周国华,孙彬彬,等.浙江省东部土壤元素地球化学特征及意义[J].吉林大学学报(地球科学版),2013,43(2):564-572. Wei Hualing, Zhou Guohua, Sun Binbin,et al. Significance and Characteristics of Soil Trace Elements Geochemistry in the Eastern of Zhejiang Province,China[J].Journal of Jilin University (Earth Science Edition),2013,43(2):564-572.

[3] 陈圣波,李鑫龙,陈磊.基于地面实测光谱的水系沉积物重金属含量反演[J].吉林大学学报(地球科学版),2014,44(4):1388-1394. Chen Shengbo, Li Xinlong, Chen Lei. Study on Inversion of Soil Heavy Metal Elements Concentrations in Stream Sediments by In-Situ Hyperspectral Measurements[J].Journal of Jilin University (Earth Science Edition),2014,44(4):1388-1394.

[4] Riley J P, Skirrow G. Chemical Oceanography[M].New York:Academic Press,1975:173-279.

[5] 郑绍建,胡霭堂,成杰民.冶炼厂区镉污染土壤中镉的形态分配及其影响因素[J].南京农业大学学报,1994,17(3):69-74. Zheng Shaojian, Hu Aitang,Cheng Jiemin.Cadmium Fractions and Factors Affecting It in Soil Near a Copper Smelter[J].Journal of Nanjing Agriculture University,1994,17(3):69-74.

[6] 刘霞,刘树庆,王胜爱.河北主要土壤中Cd和Pb的形态分布及其影响因素[J].土壤学报,2003,40(3):393-399. Liu Xia,Liu Shuqing, Wang Sheng'ai.Distribution of Cadmium and Lead Forms and Its Affecting Factors in Soils of Hebei Province[J].Acta Pedologica Sinica,2003,40(3):393-399.

[7] 黄爽,张仁铎,张家应,等.土壤理化性质对吸附重金属镉的影响[J]. 灌溉排水学报,2012,31(1):19-22. Huang Shuang,Zhang Renduo, Zhang Jiaying,et al.Effects of Physical and Chemical Characteristics of Soils on the Adsorption of Cd[J].Journal of Irrigationand Drainage,2012,31(1):19-22.

[8] Iksong Ham,胡林飞,吴建军,等.泥炭对土壤镉有效性及镉形态变化的影响[J].土壤通报,2009,40(6):1436-1441. Iksong Ham,Hu Linfei,Wu Jianjun,et al.Effects of Peat Application on the DTPA Extractable Cd and Cd Fractions in Two Contaminated Soils[J].Chinese Journal of Soil Science,2009,40(6):1436-1441.

[9] 谭长银,吴龙华,骆永明,等.长期定位试验点土壤镉的吸附解吸及形态分配[J].水土保持学报,2010,24(6):167-172. Tan Changyin, Wu Longhua, Luo Yongming,et al.Adsorption, Desorption and Speciation of Cadmium in Soils of Long-Term Positioning Experimental Sites[J].Journal of Soil and Water Conservation,2010,24(6):167-172.

[10] 刘意章,肖唐付,宁增平,等.三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究[J].环境科学,2013,34(6):2390-2398. Liu Yizhang,Xiao Tangfu,Ning Zengping,et al.Cadmium and Selected Heavy Metals in Soils of Jianping Area in Wushan County,the Three Gorges Region:Distribution and Source Recognition[J].Environmental Science,2013,34(6):2390-2398.

[11] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,l8(1):37-44. Cao Jianhua,Yuan Daoxian,Pan Genxing.Some Soil Features in Karst Ecosystem[J].Advance in Earth Sciences,,2003,18(1):37-44.

[12] 朱嬿婉,沈壬水,钱钦文.土壤中金属元素的五个组分的连续提取法[J].土壤,1989,21(3):163-166. Zhu Yanwan,Shen Renshui,Qian Qinwen.Sequential Extraction for Five Components of Heavy Metals in Soil[J].Soils,1989,21(3):163-166.

[13] GB 15618-2008土壤环境质量标准[S]. 北京:中国标准出版社, 2008. GB 15618-2008 Environmental Quality Standards for Soils[S].Beijing:Standard Press of China, 2008.

[14] 袁道先.桂林岩溶环境水文地质与水资源保护的研究[R].桂林:岩溶地质研究所,1984. Yuan Daoxian.Study of Hydrology and Water Conservancy in Guilin Karst Area[R]. Guilin:Institute of Karst Geology,1984.

[15] 罗绪强,王世杰,张桂玲.土壤镉污染及其生物修复研究进展[J].山地农业生物学报,2008,27(4):357-361. Luo Xuqiang, Wang Shijie,Zhang Guiling. Advances in the Study of Cadmium Contaminated Soil and Its Treatment[J].Journal of Mountain Agriculture and Biology,2008,27(4):357-361.

[16] 何腾兵,董玲玲,李广枝,等.喀斯特山区不同母质(岩)发育的土壤主要重金属含量差异性研究[J].农业环境科学学报,2007,27(1):188-193. He Tengbing, Dong Lingling, Li Guangzhi,et al.Differences of Heavy Metal Contents in Soils Derived from Different Parent Materials/Rocks in Karst Mountain Area[J].Journal of Agro-Environment Science,2007,27(1):188-193.

[17] 王书航,王雯雯,姜霞,等.蠡湖沉积物重金属形态及稳定性研究[J].环境科学,2013,34(9):3562-3571. Wang Shuhang,Wang Wenwen,Jiang Xia,et al.Heavy Metal Speciation and Stability in the Sediment of Lihu Lake[J].Environmental Science,2013,34(9):3562-3571.

[18] 高彦征,贺纪正,凌婉婷.湖北省几种土壤的重金属镉、铜形态[J].华中农业大学学报,2001,20(2):143-147. Gao Yanzheng, He Jizheng,Ling Wanting.Fractionation of Heavy Meatal Cadmium and Copperin some Soils in Hubei Province[J].Journal of Huazhong Agricultural University,2001,20(2):143-147.

[19] 王亚平,王岚,许春雪,等. pH对长江下游沉积物中重金属元素Cd、Pb释放行为的影响[J].地质通报,2012,31(4):594-600. Wang Yaping, Wang Lan, Xu Chunxue,et al.The Influence of pH on the Release Behavior of Heavy Metal Elements Cd and Pb in the Sediments of the Lower Reaches of the Yangtze River[J].Geological Bulletin of China, 2012,31(4):594-600.

[20] Singh K P,Mohan D,Singh V K,et al. Studies on Distribution and Fraction of Heavy Metals in Gomti River Sediments Atributary of the Ganges,India[J].Journal of Hydrology,2005,312(1/2/3/4):14-27.

[21] 董丽华,李亚男,常素云,等.沉积物中重金属的形态分析及风险评价[J].天津大学学报,2009,42(12):1112-1117. Dong Lihua,Li Yanan,Chang Suyun,et al.Fraction Distribution and Risk Assessment of Heavy Metals in Sediments[J].Journal of Tianjin University,2009,42(12):1112-1117.

[22] 雷鸣,廖柏寒,曾清如,等.湘南某矿区菜园土中典型重金属的形态分析[J].环境化学,2007,26(6):779-782. Lei Ming,Liao Bohan, Zeng Qingru,et al.Fraction Analysis of Priority Heavy Metals in a Garden Soil Around Mine(Southern Hunan)[J].Environmental Chemistry,2007,26(6):779-782.

[23] 陈春霄,姜霞,郑丙辉,等.太湖竺山湾沉积物重金属形态分析及风险评价[J].环境科学与技术,2013,36(6):177-182. Chen Chunxiao, Jiang Xia, Zheng Binghui,et al.Heavy Metals in Sediment of Lake Taihu's Zhushan Bay:Chemical Speciation and Risk Evaluation[J].Environmental Science & Technology,2013,36(6):177-182.

[24] Chapman D. Water Quantity Assessment[M]. London:Chapman & Hall Ltd,1992:121-134.

[25] Teasdale P R,Apte S C,Ford P W,et al. Geochemical Cycling and Speciation of Copper in Waters and Sediments of Macquarie Harbour,Western Tasmania[J]. Estuarine,Coastal and Shelf Science,2003,57:475-487.

[26] Singh A K,Benerjee D K G. Rain Size and Geochemical Partitioning of Heavy Metals in Sediments of the Damodar River:A Tributary of the Lower Ganga,India[J].Environ Geol,1999,39(1):91-98.

[27] 陈静生,董林,邓宝山,等.铜在沉积物各相中分配的实验模拟与数值模拟研究:以鄱阳湖为例[J].环境科学学报,1987,7(2):140-149. Chen Jingsheng,Dong Lin, Deng Baoshan, et al. Modeling Study on Copper Partit Ioning in Sediments:A Case Study of Poyang Lake[J]. Acta Scientiae Circumstantiae,1987,7(2):140-149.

[28] Zoller W H,Gladney E S,Duce R A.Atmospheric Concentrations and Sources of Trace Metals at the South Pole[J].Science,1974,183:199-201.

[29] 关莹,臧淑英,肖海丰. 连环湖马圈泡沉积物重金属污染及潜在生态风险[J].地理科学,2014,34(4):505-512. Guan Ying, Zang Shuying, Xiao Haifeng.Pollution and Potential Ecological Risk of Heavy Metals Incore Sediments from Majuan Lake in Lianhuan Lake, China[J].Scientia Geographica Sinica,2014,34(4):505-512.

[30] Sutherland R A.Bed Sediment-Associated Trace Me-tals in an Urban Stream, Oahu, Hawaii[J]. Environmental Geology,2000,39(6):611-627.

[31] 魏复盛,杨国治,蒋德珍,等.中国土壤元素背景值基本统计量及其特征[J].中国环境监测,1991,7(1):1-6. Wei Fusheng, Yang Guozhi,Jiang Dezhen,et al. The Basic Statistical Characteristic Value and Background Value of China Soil Element[J]. Environmental Monitoring of China, 1991, 7(1):1-6.

[32] Hakanson L. An Ecological Risk Index for Aquatic Control a Sedimentological Approach[J].Water Research,1980,14:975-1001.

[33] Maiz I, Arambarri I, Garcia R. Evaluation of Heavy Metal Availability in Polluted Soils by Two Sequential Extraction Procedures Using Factor Analysis[J].Environmental Pollution,2000,110(1):3-9.

[34] 李泽琴,侯佳渝,王奖臻.矿山环境土壤重金属污染潜在生态风险评价模型探讨[J].地球科学进展,2008,23(5):509-516. Li Zeqin, Hou Jiayu, Wang Jiangzhen.Potential Ecological Risk Assessment Model for Heavy Metal Contamination of Agricultural Soils in Mining Areas[J].Advances in Earth Science,2008,23(5):509-516.

[35] 徐争启, 倪师军, 庹先国,等. 潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115. Xu Zhengqi, Ni Shijun, Tuo Xianguo, et al.Calculation of Heavy Metals' Toxicity Coefficient in the Evaluation of Potential Ecological Risk Index[J].Environmental Science & Technology,2008,31(2):112-115.

[36] HJ25.3-2014污染场地风险评估技术导则[S].北京:中国环境科学出版社,2014. HJ25.3-2014 Guidelines for Risk Assessment of Contaminated Sites[S].Beijing:China Environmental Science Press,2014.

[37] 刘周莉, 何兴元, 陈玮. 忍冬:一种新发现的镉超富集植物[J].生态环境学报,2013, 22(4):666-670. Liu Zhouli, He Xingyuan,Chen Wei.Lonicera Japonica Thunb:A Newly Discovered Cd Hyper-Accumulator[J].Ecology and Environmental Sciences,2013,22(4):666-670.

[1] 代杰瑞, 喻超, 张明杰, 董建, 胡雪平. 淄博市区大气颗粒物重金属元素分布特征及其来源分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1201-1211.
[2] 徐军, 郝立波, 赵新运, 赵玉岩, 马成有, 魏俏巧, 吴超, 石厚礼. 松花江上游表层沉积物中重金属元素时空分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 854-862.
[3] 陆继龙, 刘奇志, 王春珍, 蔡波, 郝立波, 尹业长, 赵玉岩. 二道松花江沉积物重金属特征及其潜在生态风险[J]. 吉林大学学报(地球科学版), 2018, 48(2): 566-573.
[4] 李永涛, 郭高山, 顾延生, 韦林, 何思远. 钢厂周边污染土壤的电性与磁性特征及其环境意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1543-1551.
[5] 李振苓, 沈金松, 李曦宁, 王磊, 淡伟宁, 郭森, 朱忠民, 于仁江. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1295-1307.
[6] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[7] 谷团. 牛角塘伴生型镉矿床特殊的成矿环境[J]. 吉林大学学报(地球科学版), 2017, 47(2): 464-476.
[8] 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829.
[9] 彭令, 徐素宁, 彭军还. 多源遥感数据支持下区域滑坡灾害风险评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 175-186.
[10] 赵建如, 初凤友, 金路, 杨克红, 葛倩. 珠江口西部海域表层沉积物重金属元素多尺度空间变化特征[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1772-1780.
[11] 赵林, 郑义, 毛国柱, 郭华. 天津围海造陆区吹填土氮磷的分布特征[J]. 吉林大学学报(地球科学版), 2015, 45(1): 255-264.
[12] 黄奇波, 覃小群, 刘朋雨, 康志强, 唐萍萍. 半干旱区岩溶碳汇原位监测方法适宜性研究[J]. 吉林大学学报(地球科学版), 2015, 45(1): 240-246.
[13] 曹玲珑,王建华,黄楚光,倪志鑫,金钢雄,瓦西拉里,陈慧娴. 大亚湾表层沉积物重金属元素形态特征、控制因素及风险评价分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1988-1999.
[14] 陈圣波,李鑫龙,陈磊. 基于地面实测光谱的水系沉积物重金属含量反演[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1388-1394.
[15] 苏小四,杜守营,杜尚海,宋宪宗,邵广凯,王璜. 基于随机模拟的浑河冲洪积扇地区地下水压采风险预报[J]. 吉林大学学报(地球科学版), 2014, 44(3): 986-994.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!