吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 145-164.doi: 10.13278/j.cnki.jjuese.20170229

• 地质与资源 • 上一篇    下一篇

大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据

孙凡婷1,2, 刘晨3, 邱殿明4, 鲁倩5, 贺云鹏5, 张铭杰1   

  1. 1. 兰州大学地质科学与矿产资源学院, 兰州 730000;
    2. 吉林省有色金属地质勘查局研究所, 长春 130012;
    3. 长春工程学院机电工程学院, 长春 130012;
    4. 吉林大学, 长春 130026;
    5. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2017-10-09 出版日期:2018-01-26 发布日期:2018-01-26
  • 通讯作者: 张铭杰(1965),男,教授,主要从事地球化学方面的研究,E-mail:mjzhang@lzu.edu.cn E-mail:mjzhang@lzu.edu.cn
  • 作者简介:孙凡婷(1988),女,研究生,主要从事地球化学方面的研究,E-mail:287759891@qq.com
  • 基金资助:
    国家自然科学基金项目(413390444);中国地质调查局地质调查计划项目(12120113055200,1212011220936)

Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry

Sun Fanting1,2, Liu Chen3, Qiu Dianming4, Lu Qian5, He Yunpeng5, Zhang Mingjie1   

  1. 1. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China;
    2. Institute of Bureau of Nonferrous Metals Geological Prospecting of Jilin Province, Changchun 130012, China;
    3. School of Mechanical & Electronic Engineering, Changchun Institute of Technology, Changchun 130012, China;
    4. Jilin University, Changchun 130026, China;
    5. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2017-10-09 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Natural Science Foundation of China(413390444)and Geological Survey Projects of China Geological Survey(12120113055200,1212011220936)

摘要: 大兴安岭地区以发育显生宙花岗岩和火山岩为特征,基性和中性侵入岩不是十分发育,仅在塔河、塔源、富西里、乌拉山、碧流台等地有所报道,且规模相对较小,它们在形成时代和成因上的差别为我们深入揭示大兴安岭地区壳幔过程提供了重要依据和线索。近期我们在大兴安岭东坡北部红花尔基地区开展了基础地质调查,在小奎勒河中游花岗杂岩体内部发现并确定了两处不规则中基性岩体,经系统的岩相学、年代学、元素和Hf同位素地球化学研究揭示:两处中基性岩体由细粒角闪辉长岩岩相和辉长闪长岩岩相构成; LA-ICP-MS单颗粒锆石U-Pb同位素定年结果显示,其成岩作用于310~293 Ma;岩石系列为准铝质、钾质-钠质、拉斑玄武质-钙碱性过渡岩系;初始岩浆为来自熔体-流体交代作用的富集地幔低程度(<5%)部分熔融作用,源区主要残留矿物相为辉石和石榴石、钙钛矿等;岩浆演化过程以结晶分离作用为主,伴随堆晶作用;形成于松嫩地块-兴安地块碰撞拼合晚期向初始大洋岛晚期大洋弧初始环境。

关键词: 地球化学, Hf同位素, 年代学, 岩石成因, 小奎勒河中基性侵入岩, 大兴安岭东坡

Abstract: The most rock types are Phanerozoic granites and volcanic rocks in the Great Xing'an Range, with small amount of basic and intermediate intrusive rocks which have been reported in Tahe, Tayuan, Fuxili, Wula Mountain and Biliutai. The differences of the formation ages and petrogenesis between those rocks provide the major basis and clues in the study on the evolution of crust and mantle in the Great Xing'an Range. We observed two irregular basic masses in the granitic complexes during the basic geologic surveys in the middle of Xiaokuile River, the Honghuaerji region, the north of east slope of the Great Xing'an Range. We obtained five points by systematical researches in petrography, chronology, elements,and Hf isotopes geochemistry. The two basic rocks are composed of fine-grained bojite and gabbro diorite. We collated the single grain zircon LA-ICP-MS U-Pb dating, and concluded that the age of diagenesis is 310-293 Ma. Rocks are the transitional series of metaluminous potassic-sodium and tholeiitic-calcalkalic. The main residual minerals of the initial magma that originated by low-degree (less than 5%) partial melting of the EM derived from the metasomatism of melt-fluid are pyroxene, garnet and perovskite. The evolution of magma was mainly of fractional crystallization followed by accumulation. The basic rocks were formed in the initial environment which was under the late collision between the Songnen massif and the Xing'an plot or the initial oceanic island-late oceanic arc.

Key words: geochemistry, Hf isotopes, geochronology, petrogenesis, intermediate-basic intrusive rocks in the Xiaokuile River, eastern slope of the Great Xing'an Range

中图分类号: 

  • P618
[1] Kinzler R J. Melting of Mantle Peridotite at Pressures Approaching the Spinel to Garnet Transition: Application to Mid-Ocean Ridge Basalt Petrogenesis[J]. Journal of Geophysical Research Solid Earth,1997, 102(B1):853-874.
[2] Beard J S. Characteristic Mineralogy of Arc-Related Cumulate Gabbros: Implications for the Tectonic Setting of Gabbroic Plutons and for Andesite Genesis[J]. Geology, 1986, 14(10):848-851.
[3] Courtillot V, Besse J. Magnetic Field Reversals, Polar Wander, and Core-Mantle Coupling[J]. Science, 1987, 237: 1140-1147.
[4] Tang Q, Zhang M, Wang Y, et al. The Origin of the Zhubu Mafic-Ultramafic Intrusion of the Emeishan Large Igneous Province, SW China: Insights from Volatile Compositions and C-Hf-Sr-Nd Isotopes[J]. Chemical Geology, 2017,10:1-5.
[5] Zhang M, Li C, Fu P, et al. The Permian Huang-shanxi Cu-Ni Deposit in Western China: Intrusive-Extrusive Association, Ore -Genesis, and Exploration Implications[J]. Mineralium Deposita, 2011, 46(2):153-170.
[6] Zhang M, Hu P, Niu Y, et al. Chemical and Stable Isotopic Constraints on the Nature and Origin of Volatiles in the Sub-Continental Lithospheric Mantle Beneath Eastern China[J]. Lithos, 2007, 96(1):55-66.
[7] Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey[J]. Journal of Volcanology & Geothermal Research, 2000, 102(12):67-95.
[8] 张铭杰, 王廷印, 高军平,等.内蒙古哈沙图北超镁铁杂岩体成因的地球化学制约[J]. 岩石学报, 2001, 17(2):206-214. Zhang Mingjie, Wang Tingyin, Gao Junping, et al. Ultramafic Complex Geochemical Constraints on the Petrogenesis in Shatubei, Inner Mongolia[J]. Acta Petrologica Sinica,2001, 17(2):206-214.
[9] Tang Q, Li C, Zhang M, et al. U-Pb Age and Hf Isotopes of Zircon from Basaltic Andesite and Geochemical Fingerprinting of the Associated Picrites in the Emeishan Large Igneous Province, SW China[J]. Mineralogy & Petrology, 2015, 109(1):103-114.
[10] Cocherie A. Systematic Use of Trace Element Distri-bution Patterns in Log-Log Diagrams for Plutonic Suites[J]. Geochimica et Cosmochimica Acta, 1986, 50(11):2517-2522.
[11] Rollison. Using Geochemical Data: Evaluation, Pre-sentation, Interpretation[J]. Geochimica et Cosmochimica Acta, 1993, 59(3):439-441.
[12] 周长勇.大兴安岭北部塔河堆晶辉长岩的形成时代、成因及大地构造意义[D].长春:吉林大学,2003. Zhou Changyong. Formation Time, Genesis and Tectonic Significance of Cumulate Gabbro in Greater Khingan Range, Northern Tahe[D]. Changchun: Jilin University, 2003.
[13] Gao S, Rudnick R L, Yuan H L, et al. Recycling Lower Continental Crust in the North China Craton[J]. Nature, 2004,432:892-897.
[14] 王春光,许文良,王枫,等.太行山南段西安里早白垩世角闪辉长岩的成因:锆石U-Pb年龄、Hf同位素和岩石地球化学证据[J].地球科学:中国地质大学学报, 2011, 36(3):471-482. Wang Chunguang, Xu Wenliang, Wang Feng,et al. Early Cretaceous Bojite in Taihang Mountain in Xi'an: Zircon U-Pb Ages, Hf Isotope and Geochemistry[J]. Earth Science:Journal of China University of Geosciences, 2011, 36(3):471-482.
[15] Liu Y, Hu Z, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1):34-43.
[16] 周长勇,葛文春,吴福元,等.大兴安岭北段塔河辉长岩的岩石学特征及其构造意义[J]. 吉林大学学报(地球科学版),2005,35(2):143-149. Zhou Changyong, Ge Wenchun, Wu Fuyuan, et al. Petrological Characteristics and Tectonic Significance of Tahe Gabbro in the North Great Xing'an Range[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(2): 143-149.
[17] 孔华,许明珠,张强,等.湘南道县辉长岩包体的锆石LA-ICP-MS定年、Hf同位组成及其地质意义[J]. 吉林大学学报(地球科学版),2016,46(3):627-638. Kong Hua, Xu Minggzhu, Zhang Qiang, et al. Zircon LA-ICP-MS Gabbro Xenoliths Hunan Road County Dating, Hf Isotopic Composition and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition), 2016,46(3):627-638.
[18] 佘宏全,李进文,向安平,等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报,2012,28(2):571-594. She Hongquan, Li Jinwen, Xiang Anping, et al. The Greater Khingan Range North Section of the Protolith Zircon U-Pb Dating and Tectonic Evolution[J]. Acta Petrologica Sinica, 2012,28(2):571-594.
[19] 樊祺诚,赵勇伟,隋建立,等.大兴安岭诺敏河第四纪火山岩分期:岩石学、年代学与火山地质特征[J]. 岩石学报,2012,28(4):1092-1098. Fan Qicheng, Zhao Yongwei, Sui Jianli, et al. The Stakes of Quaternary Volcanic Rocks in Nuomin River, North of the Great Xing'an Range: Petrology, Geochronology and Geological Features of Vnlcanit[J]. Acta Petrologica Sinica, 2012,28(4):1092-1098.
[20] 任纪舜,王作勋,陈炳蔚,等.新一代中国大地构造图[J].中国区域地质,1997,16(3):225-248. Ren Jishun, Wang Zuoxun, Chen Bingyu, et al. Such as a New Generation of Chinese Tectonic Map[J]. Regionageology China, 1997, 16(3):225-248.
[21] 李文国.内蒙古志留纪生物地层[C]//中国地质科学院地层生物论文集编委会.地层古生物论文集. 北京:地质出版社,1988:180-192. Li Wenguo. The Silurian Biostratigraphy of Inner Mongolia[C]// Committee of the Formation of Biological Papers of the Chinese Academy of Geological Sciences.A Collection of Stratigraphic Paleontology. Beijing: Geological Publishing House, 1988: 180-192.
[22] Wu Fuyan, Yang Yueheng, Xie Liewen, et al. Hf Isotopic Compositions of the Standerd Zircons and Baddeleyited Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1/2): 105-126.
[23] Cox K G, Bell J D, Pankhurst R J. The Inter-pretation of Igneous Rocks[J]. Allen & Unwin, 1979, 44:115-116.
[24] Delaroche H, Leterrier J, Grandclaude P, et al. A Classification of Volcanic and Plutonic Rocks Using R1-R2 Diarram and Major Element Analyses:Its Relationships with Current Nomenclature[J]. Chemical Geology, 1980, 29(1):183-210.
[25] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81.
[26] Middlemost E A K. A Simple Classification of Vol-canic Rocks[J].Bulletin Volcanologique, 1972, 36(2):382-397.
[27] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983.
[28] 沈渭洲,高剑峰,徐士进,等.扬子板块西缘泸定桥头基性杂岩体的地球化学特征和成因[J].高校地质学报,2002,8(4): 380-389. Shen Weizhou, Gao Jianfeng, Xu Shijin, et al. Geochemical Characteristics Genesis of the Qiaotou Basic Complex, Luding County, Western Yangtze Block[J]. Journal of University Geology, 2002, 8(4): 380-389.
[29] Shervais J W. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas[J]. Earth & Planetary Science Letters, 1982, 59(1):101-118.
[30] 夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,2007,26(1):77-89. Xia Linqi, Xia Zuchun, Xu Xueyi,et al. Judging by the Geochemical Method and Arc Basalt[J]. Acta Petrologica et Mineralogica, 2007, 26(1): 77-89.
[31] 李昌年.火成岩微量元素岩石学[M]. 武汉:中国地质大学出版社, 1992. Li Changnian. Trace Elements in Igneous Petrology[M].Wuhan:China University of Geosciences Press, 1992.
[32] 赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007, 31(1):92-103. Zhao Zhenhua.How to Use the Trace Element Diageams to Discriminate Tectionic Settings[J].Geotectonica et Metallogenic, 2007, 31(1):92-103.
[33] Othman D B, White W M, Patchett J, et al. The Geochemistry of Marine Sediments, Island Arc Magma Genesis, and Crust-Mantle Recycling[J]. Earth & Planetary Science Letters, 1989, 94(1/2):1-21.
[34] Ishizuka O, Taylor R N, Milton J A, et al. Fluid-Mantle Interaction in an Intra-Oceanic Arc: Constraints from High-Precision Pb Isotopes[J]. Earth & Planetary Science Letters, 2003, 211(3/4):221-236.
[35] Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey[J]. Journal of Volcanology & Geothermal Research, 2000, 102(1/2):67-95.
[36] Donnelly K E, Goldstein S L, Langmuir C H, et al. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics[J]. Earth & Planetary Science Letters, 2004, 226(3/4):347-366.
[37] Sun S S, McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345.
[1] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[2] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[3] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[4] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.
[5] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[6] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[7] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[8] 乔健, 栾金鹏, 许文良, 王志伟, 赵硕, 郭鹏. 佳木斯地块北部早古生代沉积建造的时代与物源:来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约[J]. 吉林大学学报(地球科学版), 2018, 48(1): 118-131.
[9] 孟恩, 王朝阳, 刘超辉, 施建荣, 李艳广. 辽东半岛东南部南辽河群变质火山岩的时代、成因及其对区域构造演化的制约[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1589-1619.
[10] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[11] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[12] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
[13] 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364.
[14] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
[15] 杨凤超, 宋运红, 赵玉岩. 辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1429-1441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!