吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 181-192.doi: 10.13278/j.cnki.jjuese.20160080

• 地质与资源 • 上一篇    下一篇

广西北部湾地区表层土壤As分布特征及其影响因素

郑国东1, 覃建勋1, 付伟2, 杨志强1, 赵辛金1, 卢炳科1   

  1. 1. 广西地质调查院, 南宁 530023;
    2. 桂林理工大学地球科学学院, 广西 桂林 541004
  • 收稿日期:2016-11-21 出版日期:2018-01-26 发布日期:2018-01-26
  • 通讯作者: 杨志强(1963),男,教授级高级工程师,主要从事勘查地球化学方面的研究,E-mail:zyyangzq@163.com E-mail:zyyangzq@163.com
  • 作者简介:郑国东(1983),男,硕士研究生,工程师,主要从事环境地球化学方面的研究,E-mail:156001601@qq.com
  • 基金资助:
    国家自然科学基金项目(41462005);中国地质调查局国家专项(GZTR20060115,GZTR20070107,GZTR20080110);广西自然科学基金项目(2014GXNSFAA118304)

Influencing Factors on Distribution and Accumulation of Arsenic in Topsoil in Beibu Gulf of Guangxi

Zheng Guodong1, Qin Jianxun1, Fu Wei2, Yang Zhiqiang1, Zhao Xinjin1, Lu Bingke1   

  1. 1. Guangxi Institute of Geological Survey, Nanning 530023, China;
    2. College of Earth Sciences, Guilin University of Technology, Guilin 541004, Guangxi, China
  • Received:2016-11-21 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41462005),National Special Project of China Geological Survey (GZTR20060115, GZTR20070107, GZTR20080110) and Natural Science Foundation of Guangxi Province (2014GXNSFAA118304)

摘要: 选取广西北部湾地区表层土壤中As元素为研究对象,采集了7 327个土壤样品,400个岩石样品,分析As、K2O、Na2O、CaO、MgO、SiO2、Al2O3、TFe2O3、Mn、Ti、pH和有机碳(SOC)等指标,探讨了土壤成土母岩、成土作用、土壤组成、pH和有机质等对表层土壤As元素的影响。结果表明:As元素平均质量分数为7.96×10-6,为中国土壤背景值0.80倍;风化作用对于As元素的次生富集起到极为重要的作用,明显强于成土母岩As元素背景的影响。Pearson相关分析和主成分分析表明:在土壤组成和土壤性质等因素中,含Al矿物(Al2O3)、含Fe矿物(TFe2O3)、含Si矿物(SiO2)和SOC,对土壤As的富集起到主导作用;pH 和含 Ca矿物(CaO)的作用较弱;而含K矿物(K2O)、含Na矿物(Na2O)和含Mg矿物(MgO)对As的次生富集作用可以忽略不计。

关键词: As, 分布特征, 影响因素, 北部湾, 表层土壤

Abstract: A total of 7 327 topsoil and 400 rock samples were collected in Beibu Gulf of Guangxi, and the concentration of the arsenic (As) and other elements or soil properties, such as K2O, Na2O, CaO, MgO, SiO2, Al2O3, TFe2O3, Mn, Ti, soil organic matter (SOC) and pH, were analyzed to discuss the relationship between the As and parent rock, weathering process, main elements, and soil properties. Moreover, we attempted to delineate the primary and secondary relationships between these factors. The results of this study show that the concentration of As is 7.96×10-6, lower than the background value of China soil. Weathering play a role in As accumulation more important than parent rocks. The results of Pearson and principal analyses indicate that Al-bearing, Fe-bearing minerals and SOC play a primary role in As accumulation, the influence of pH and Ca-bearing mineral is weak, and the role of K-bearing, Na-bearing and Mg-bearing minerals in As accumulation is negligible.

Key words: arsenic, distribution, influence factors, Beibu Gulf, topsoil

中图分类号: 

  • P59
[1] 管东升, 陈玉娟, 阮国标.广州城市及近郊土壤重金属含量特征及人类活动的影响[J]. 中山大学学报(自然科学版), 2001, 40(4): 93-97. Guan Dongsheng, Chen Yujuan, Ruan Guobiao. Study on Heavy Metal Concentrations and the Impact of Human Activity on Them in Urban and Suburb Soils of Guangzhou[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2001, 40(4): 93-97.
[2] Staglini W M, Doelman P, Salomons W, et al. Che-mical Time Bombs: Predicting the Unpredictable Environment[J]. Environment Science and Policy for Sustainable Development, 1991, 33(4): 4-30.
[3] Salomons W, Konsten C J M, Meulen-Smidt G R B T, et al. Summary of the Workshop on Delayed Effects of Chemicals in Soils and Sediments (Chemical Time Bombs), with Emphasis on the Scandinavian Region[J]. Applied Geochemistry, 1993, 8(9): 295-299.
[4] Chen T B, Wong J W C, Zhou H Y, et al. Asse-ssment of Trace Metal Distribution and Contamination in Surface Soils of HongKong[J]. Environmental Pollution, 1997, 96(1): 61-68.
[5] Alloway B J. Heavy Metals in Soils[M]. London: Environmental Pollution, 1995:1318-1324.
[6] Siegel F R. Environmental Geochemistry of Potentially Toxic Metals[M]. Berlin: Springer Science & Business Media, 2002: 45-59.
[7] Hardy M, Cornu S. Location of Natural Trace Elements in Silty Soils Using Particle-Size Fractionation[J]. Geoderma, 2006, 133(3): 295-308.
[8] Acosta J A, Martínez-Martínez S, Faz A, et al. Accumulations of Major and Trace Elements in Particle Size Fractions of Soils on Eight Different Parent Materials[J]. Geoderma, 2011, 161: 30-42.
[9] Klassen R A. Geological Factors Affecting the Distri-bution of Trace Metals in Glacial Sediments of Central New Foundland[J]. Environmental Geology, 1998, 33(2): 154-169.
[10] Salminen R, Tarvainen T. The Problem of Defining Geochemical Baselines: A Case Study of Selected Elements and Geological Materials in Finland[J]. Journal of Geochemical Exploration, 1997, 60(1): 91-98.
[11] Tack F M G, Verloo M G, Vanmechelen L, et al. Baseline Concentrations Levels of Trace Elements as a Function of Clay and Organic Carbon Contents in Soils in Flanders (Belgium)[J]. Science of Total Environment, 1997, 201(2):113-123.
[12] Martinez C E, Motto H L. Solubility of Lead, Zinc and Copper Added to Mineral Soils[J]. Environmental Pollution, 2000, 107(1): 153-158.
[13] Ramos-Miras J J, Roca-Perez L,Guzmán-Palomino M, et al. Background Levels and Baseline Values of Available Heavy Metals in Mediterranean Greenhouse Soils (Spain)[J]. Journal of Geochemical Exploration, 2011,110(2): 186-192.
[14] 王世杰, 季宏兵, 欧阳自远,等. 碳酸盐岩风化成土作用的初步研究[J]. 中国科学:D辑, 1999, 29(5): 441-449. Wang Shijie, Ji Hongbing, Ouyang Ziyuan, et al. Study on Weathering Pedogenesis of Carbonate Rock[J]. Science in China: Series D, 1999, 29(5): 441-449.
[15] 杨元根, 刘丛强, 袁可能,等. 南方红土形成过程及其稀土元素地球化学[J]. 第四纪研究, 2000, 20(5): 469-480. Yang Yuangen, Liu Congqiang, Yuan Keneng, et al. Laterite Formation Process in Southern China and Its Rare Earth Element(REE) Geochemistry[J]. Quaternary Sciences, 2000, 20(5): 469-480.
[16] 孙承兴, 王世杰, 刘秀明,等. 碳酸盐岩风化壳岩-土界面地球化学特征及其形成过程:以贵州花溪灰岩风化壳剖面为例[J]. 矿物学报, 2002, 22(2): 126-132. Sun Chengxing, Wang Shijie, Liu Xiuming,et al. Geochemical Characteristics and Formation Mechanism of Rock:Soil Interface in Limestone Weathering Crust at Huaxi, Guizhou Province[J].Acta Mineralogica Sinica, 2002, 22(2): 126-132.
[17] 刘秀明, 王世杰, 孙承兴,等. 石灰土物质来源的判别:以黔北、黔中几个剖面为例[J].土壤, 2004, 36(1): 30-36. Liu Xiuming, Wang Shijie, Sun Chengxing, et al. Identification of Origin of Limestone Soil:A Case Study of Profiles in Central and North Guizhou[J]. Soils, 2004, 36(1): 30-36.
[18] 周德全, 王世杰, 刘秀明. 石灰土(碳酸盐岩风化壳)形成地球化学过程研究[J].地球与环境, 2005, 33(2): 31-38. Zhou Dequan, Wang Shijie, Liu Xiuming, et al. Study on Geochemical Processes in Limestone Soil Profiles[J]. Earth and Environment, 2005, 33(2): 31-38.
[19] 周长松, 邹胜章, 李录娟, 等. 岩溶区典型石灰土Cd形态指示意义及风险评价:以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562. Zhou Changsong, Zou Shengzhang, Li Lujuan, et al. Implications of Cadmium form and Risk Assessment of Calcareous Soil in Karst Area: A Case Study of Maocun in Guilin, China[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 552-562.
[20] Yu W C, Wang R H, Zhang Q L, et al. Minera-logical and Geochemical Evolution of the Fusui Bauxite Deposit in Guangxi, South China: From the Original Permian Orebody to a Quarternary Salento-Type Deposit[J]. Journal of Geochemical Exploration, 2004, 146:75-88.
[21] Wei X, Ji H B, Li D J, et al. Material Source Analysis and Element Geochemical Research About Two Types of Representative Bauxite Deposits and Terra Rossa in Western Guangxi, Southern China[J]. Journal of Geochemical Exploration, 2013, 133: 68-87.
[22] Liu W J, Liu C Q, Zhao Z Q, et al. Elemental and Strontium Isotopic Geochemistry of the Soil Profiles Developed on Limestone and Sandstone in Karstic Terrain on Yunnan-Guizhou Plateau, China: Lmplications for Chemical Weathering and Parent Materials[J]. Journal of Asian Earth Sciences, 2013, 67(7):138-152.
[23] 多目标区域地球化学调查规范DD2005-1[S]. 北京: 中国标准出版社, 2005. Specification for Multi-Purpose Regional Geochemical Survey DD2005-1[S]. Beijing: Standards Press of China, 2005.
[24] 数据的统计处理和解释正态性检验GB/T4882-2001[S]. 北京: 中国标准出版社, 2001. Statistica Interpretation of Data-Normality Test GB /T4882-2001[S]. Beijing: Standards Press of China, 2001.
[25] 鄢明才, 迟清华, 顾铁新, 等. 中国东部地壳元素丰度与岩石平均化学组成研究[J]. 物探与化探, 1997(6): 451-459. Yan Mingcai, Chi Qinghua, Gu Tiexin, et al. Chemical Compositions of Continental Crust and Rocks in Eastern China[J]. Geophysical and Geochemical Exploration, 1997(6): 451-459.
[26] 鄢明才, 顾铁新, 迟清华, 等. 中国土壤化学元素风度与表生地球化学特征[J]. 物探与化探, 1997,21(3):161-167. Yan Mingcai, Gu Tiexin, Chi Qinghua et al. Abundance of Chemical Elements of Soils in China and Supergenesis Geochemistry Characteristics[J]. Geophysical and Geochemical Exploration, 1997, 21(3):161-167.
[27] Fichter J, Turpault M P, Dambrine E, et al. Loca-lization of Base Cations in Particle Size Fractions of Acid Forest Soils (Volges Mountains, N-E France)[J]. Geoderma, 1998, 82(4): 295-314.
[28] 广西土壤肥料工作站. 广西土壤[M]. 南宁: 广西科学技术出版社, 1994: 300-301. Guangxi Soil and Fertilizer Station. Soil in Guangxi[M]. Nanning: Guangxi Science and Technology Press, 1994: 300-301.
[29] Zhang X P, Deng W, Yang X M. The Background Concentrations of 13 Soil Trace Elements and Their Relationships to Parent Materials and Vegetation in Xizang (Tibet), China[J]. Journal of Asian Earth Sciences, 2002, 21(2): 167-174.
[30] Chen M, Ma L Q, Harris W G. Baseline Concen-trations of 15 Trace Elements in Florida Surface Soils[J]. Journal of Environmental Quality, 1999, 28(4): 1173-1181.
[31] Tack F M G, Vanhaesebroeck T, Verloo M G, et al. Mercury Baseline Levels in Flemish Soils (Belgium)[J]. Environmental Pollution, 2005, 134(1): 173-179.
[32] Huang P M. Feldspars, Olivines, Pyroxenes, and Amphiboles[C]//Dixon J B, Weed S B. Minerals in Soil Environments. Madison: Soil Science Society of America Journal, 1989: 975-1050.
[33] Monger H C, Kelly E F. Silica Minerals[C]//Dixon J B, Schulze D G. Soil Mineralogy with Environmental Applications. Madison: Soil Science Society of America Journal, 2002: 611-636.
[34] Bigham J M, Fitzpatrick R W, Schulze D G, et al. Iron Oxides[C]//Dixon J B, Schulze D G. Madison: Soil Mineralogy with Environmental Applications. Madison: Soil Science Society of America Journal, 2002: 323-367.
[35] Nachtegaal M, Sparks D L. Effect of Iron Oxide Coatings on Zinc Sorption Mechanism at the Clay-Mineral/Water Interface[J]. Journal of Colloid and Interface Science, 2004, 276(1): 13-23.
[36] Sterckeman T, Douay F, Baize D, et al. Factors Affecting Trace Element Concentrations in Soils Developed on Recent Marine Deposits from Northern France[J]. Applied Geochemistry, 2004, 19(1): 89-103.
[37] Sipos P, Németh T, Kis V K, et al. Association of Individual Soil Mineral Constituents and Heavy Metals as Studied by Sorption Experiments and Analytical Electron Microscopy Analyses[J]. Journal of Hazardous Materials, 2009, 168(2/3): 1512-1520.
[38] Obrist D, Johnson D W, Lindberg S E, et al. Mercury Distribution Across 14 US Forests:Part I: Spatial Patterns of Concentrations in Biomass, Litter, and Soils[J]. Environmental Science and Technology, 2011, 45(9): 3974-3981.
[1] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798.
[2] 张志, 管志超, 王少军. 结合实测光谱的ASTER TIR数据岩性划分与构造样式分析:以新疆阿克苏蓝片岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 334-342.
[3] 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251.
[4] 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893.
[5] 张冲, 黄大年, 秦朋波, 吴国超, 方刚. 重力场向下延拓的三阶Adams-Bashforth公式法[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1533-1542.
[6] 陈斐然, 张颖, 徐祖新, 谭程, 周肖肖. 全球前寒武—寒武系含油气盆地石油地质特征及成藏主控因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 974-989.
[7] 蔡来星, 王蛟, 郭兴伟, 肖国林, 朱晓青, 庞玉茂. 南黄海中部隆起中—古生界沉积相及烃源岩特征——以CSDP-2井为例[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1030-1046.
[8] 张立敏, 王岳军, 张玉芝, 刘汇川, 张新昌. 海南岛北部古生界时代:碎屑锆石U-Pb年代学约束[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1187-1206.
[9] 赵院冬, 车继英, 吴大天, 许逢明, 赵君, 李士超. 小兴安岭西北部早—中侏罗世TTG花岗岩年代学、地球化学特征及构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1119-1137.
[10] 郗爱华, 王明智, 葛玉辉, 李碧乐, 王泉, 朱靓. 黑龙江省五道岭地区花岗斑岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1159-1171.
[11] 袁利娟, 杨峰田. 北京迭断陷内蓟县系热储层温度分布特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 179-188.
[12] 韩凯, 郑智杰, 甘伏平, 陈贻祥, 陈玉玲. 利用多源大功率充电法定位复杂岩溶含水通道的方法[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1501-1510.
[13] 董德明, 曹珍, 闫征楚, 花修艺, 朱磊, 徐阳, 郭志勇, 梁大鹏. 臭氧-超声联用处理聚乙烯醇废水[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1191-1198.
[14] 李庆洋, 李振春, 黄建平, 李娜, 苏在荣. 基于贴体全交错网格的起伏地表正演模拟影响因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 920-929.
[15] 陈圣波, 于亚凤, 杨金中, 王楠, 梦华. 基于实测光谱指数法的ASTER遥感数据岩性信息提取[J]. 吉林大学学报(地球科学版), 2016, 46(3): 938-944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!