[1] 张华,李振春,韩文功.起伏地表条件下地震波数值模拟方法综述[J].勘探地球物理进展,2007,30(5):334-339. Zhang Hua, Li Zhenchun, Han Wengong. Review of Seismic Wave Numerical Simulation from Irregular Topography[J]. Progress in Exploration Geophysics, 2007, 30(5):334-339.
[2] 孙建国.复杂地表条件下地球物理场数值模拟方法评述[J].世界地质,2007,26(3):345-362. Sun Jianguo. Methods for Numerical Modeling of Geophysical Fields Under Complex Topographical Conditions:A Critical Review[J]. Global Geology, 2007, 26(3):345-362.
[3] 裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J]. 石油地球物理勘探,2004,39(6):629-634. Pei Zhenglin. Numerical Modeling Using Staggered-Grid High-Order Finite-Difference of Elastic Wave Equation on Arbitrary Relief Surface[J]. Oil Geophysical Prospecting, 2004, 39(6):629-634.
[4] 王雪秋,孙建国.地震波有限差分数值模拟框架下的起伏地表处理方法综述[J]. 地球物理学进展,2008, 23(1):40-48. Wang Xueqiu, Sun Jianguo. The State-of-the-Art in Numerical Modeling Including Surface Topography with Finite-Difference Method[J]. Progress in Geophysics, 2008, 23(1):40-48.
[5] 王秀明,张海澜.用于具有不规则起伏自由表面的介质中弹性波模拟的有限差分算法[J].中国科学:G辑:物理学、力学、天文学, 2004, 34(5):481-493. Wang Xiuming, Zhang Hailan. Modeling the Seismic Wave in the Media with Irregular Free Interface by the Finite-Difference Method[J]. Science in China:Series G:Physica, Mechanica and Astronomica, 2004, 34(5):481-493.
[6] 郭振波,李振春.起伏地表条件下频率-空间域声波介质正演模拟[J].吉林大学学报(地球科学版),2014, 44(2):683-693. Guo Zhenbo, Li Zhenchun. Acoustic Wave Modeling in Frequency-Spatial Domain with Surface Topography[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(2):683-693.
[7] 李振春,李庆洋,黄建平,等. 一种稳定的高精度双变网格正演模拟与逆时偏移方法[J]. 石油物探, 2014, 53(2):127-136. Li Zhenchun,Li Qingyang,Huang Jianping,et al. A Stable and High-Precision Dual-Variable Grid Forward Modeling and Reverse Time Migration Method[J]. Geophysical Prospecting for Petroleum, 2014, 53(2):127-136.
[8] Hestholm S, Ruud B. 2-D Finite-Difference Elastic Wave Modeling Including Surface Topography[J]. Geophysical Prospecting, 1994, 42:371-390.
[9] 董良国,郭晓玲,吴晓丰,等.起伏地表弹性波传播有限差分法数值模拟[J]. 天然气工业,2007, 27(10):38-41. Dong Liangguo, Guo Xiaoling, Wu Xiaofeng,et al. Finite Difference Numerical Simulation for the Elastic Wave Propagation in Rugged Topography[J]. Natural Gas Industry. 2007, 27(10):38-41.
[10] Tarrass I,Giraud L,Thore P.New Curvilinear Scheme for Elastic Wave Propagating in Presence of Curved Topography[J]. Geophysical Prospecting, 2011,59:889-906.
[11] Fornberg B. The Pseudo-Spectral Method:Accurate Repre-sentation in Elastic Wave Calculations[J]. Geophysics, 1988, 53:625-637.
[12] Komatitsch D, Coute F, Mora P. Tensorial Formulation of the Wave Equation for Modelling Curved Interfaces[J]. Geophysical Journal International, 1996, 127:156-168.
[13] Zhang W, Chen X. Traction Image Method for Irregular Free Surface Boundaries in Finite Difference Seismic Wave Simulation[J]. Geophysical Journal International, 2006, 167:337-353.
[14] Zhang W, Shen Y, Zhao L. Three-Dimensional Aniso-tropic Seismic Wave Modelling in Spherical Coordinates by a Collocated-Grid Finite-Difference Method[J]. Geophysical Journal International, 2012, 188:1359-1381.
[15] 祝贺君,张伟,陈晓非.二维各向异性介质中地震波场的高阶同位网格有限差分模拟[J].地球物理学报, 2009, 52(6):1536-1546. Zhu Hejun, Zhang Wei, Chen Xiaofei. Two-Dimensional Seismic Wave Simulation in Anisotropic Media by Non-Staggered Finite-Difference Method[J]. Chinese Journal of Geophysics, 2009, 52(6):1536-1546.
[16] Appelo D, Petersson N A. A Stable Finite Difference Method for the Elastic Wave Equation on Complex Geometries with Free Surfaces[J]. Communications in Computational Physics, 2009, 5:84-107.
[17] 兰海强,刘佳,白志明.VTI介质起伏地表地震波场模拟[J]. 地球物理学报,2011, 54(8):2072-2084. Lan Haiqiang, Liu Jia, Bai Zhiming. Wave-Field Simulation in VTI Media with Irregular Free Surface[J]. Chinese Journal of Geophysics, 2011, 54(8):2072-2084.
[18] 丘磊,田钢,石战结, 等.起伏地表条件下有限差分地震波数值模拟:基于广义正交曲线坐标系[J].浙江大学学报(工学版), 2012,46(10):1923-1930. Qiu Lei, Tian Gang, Shi Zhanjie, et al. Finite-Difference Method for Seismic Wave Numerical Simulation in Presence of Topography:In Generally Orthogonal Curvilinear Coordinate System[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(10):1923-1930.
[19] Rao Y, Wang Y H. Seismic Waveform Simulation with Pseudo-Orthogonal Grids for Irregular Topographic Models[J]. Geophysical Journal International, 2013, 194:1778-1788.
[20] 孙建国,蒋丽丽. 用于起伏地表条件下地球物理场数值模拟的正交曲网格生成技术[J]. 石油地球物理勘探, 2009, 44(4):494-500. Sun Jianguo, Jiang Lili. Orthogonal Curvilinear Grid Generation Technique Used for Numeric Simulation of Geophysical Fields in Undulating Surface Condition[J]. Oil Geophysical Prospecting, 2009, 44(4):494-500.
[21] 蒋丽丽,孙建国. 基于Poisson方程的曲网格生成技术[J].世界地质, 2008, 27(3):298-305. Jiang Lili, Sun Jianguo. Source Terms of Elliptic System in Grid Generation[J]. Global Geology, 2008, 27(3):298-305.
[22] Lisitsa V,Vishnevskiy D.Lebedev Scheme for the Nume-rical Simulation of Wave Propagation in 3D Anisotropic Elasticity Double Dagger[J]. Geophysical Prospecting, 2010, 58:619-635.
[23] 李娜,黄建平,李振春,等. Lebedev网格改进差分系数TTI介质正演模拟方法研究[J]. 地球物理学报,2014, 57(1):261-269. Li Na, Huang Jianping, Li Zhenchun, et al. The Study on Numerical Simulation Method of Lebedev Grid with Dispersion Improvement Coefficients in TTI Media[J]. Chinese Journal of Geophysics, 2014, 57(1):261-269.
[24] 李庆洋,黄建平,李振春,等.起伏地表贴体全交错网格仿真型有限差分正演模拟[J].石油地球物理勘探,2015, 50(4):633-642. Li Qingyang, Huang Jianping, Li Zhenchun, et al. Undulating Surface Body-Fitted Grid Seismic Modeling Based on Fully Staggered-Grid Mimetic Finite Difference[J]. Oil Geophysical Prospecting, 2015, 50(4):633-642. |