吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1556-1565.doi: 10.13278/j.cnki.jjuese.20180172

• 中国水利学会勘测专业委员会专栏 • 上一篇    

基于IBIS-L的某黄土高填方边坡支护结构变形特征

魏恺泓1,2, 裴向军2, 张世殊1, 冉从彦1, 崔中涛1, 李青春1, 李进元1   

  1. 1. 中国电建集团成都勘测设计研究院有限公司, 成都 610072;
    2. 成都理工大学地质灾害防治与地质环境保护国家重点实验室, 成都 610059
  • 收稿日期:2018-06-12 发布日期:2018-11-20
  • 作者简介:魏恺泓(1989-),男,博士研究生,工程师,主要从事水电工程和岩土工程勘察设计工作,E-mail:kaihongwei0908@126.com
  • 基金资助:
    国家重点基础研究发展计划("973"计划)项目(2014CB744703)

Deformation Characteristics of Loess High Fill Slope Support Structure Based on IBIS-L

Wei Kaihong1,2, Pei Xiangjun2, Zhang Shishu1, Ran Congyan1, Cui Zhongtao1, Li Qingchun1, Li Jinyuan1   

  1. 1. Chengdu Engineering Corporation Limited, Power China, Chengdu 610072, China;
    2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
  • Received:2018-06-12 Published:2018-11-20
  • Supported by:
    Supported by National Key Basic Research Program ("973" Program)(2014CB744703)

摘要: 直立式填方支护在建筑、机场、公路、铁路、矿山等大型基础设施建设项目中的作用不可或缺,但黄土地区边坡支护结构易出现桩基沉降、桩体弯曲、桩板墙开裂的现象。为进一步定量分析其变形特征,采用地形微变监测仪(IBIS-L)进行全天候不间断监测,通过对采集的点面数据进行研究,结果表明:1)支护结构变形总体上具有明显的区域性差异,近15 d的最大变形量为26.6 mm;2)对象监测点位移呈间隔24 h"波浪形"增长规律,且无收敛趋势,极可能导致边坡整体失稳;3)结合温度监测,以监测点Pix8为例,理论计算结果与监测数据相吻合,揭示了s-t曲线呈"波浪形"增长的原因,得出大体积混凝土在大气温度场条件下的变形具有"滞后效应"的响应特征。

关键词: 黄土, 高填方边坡, 支护结构, 变形, 监测

Abstract: In a construction of airport, highway, railway, mine and other large-scale infrastructure construction projects, a vertical fill support structure become an indispensable part with the urbanization of a loess area. However, the slope supporting structure in loess area is prone to pile foundation settlement, pile bending,and pile plate wall cracking. In order to analyze its deformation characteristics, an all-weather continuous monitoring was carried out by using IBIS-L. The point and surface data collected show the followings:1) the deformation of supporting structure showed obvious regional differences in general, the maximum deformation value of the last 15 days was 26.6 mm; 2) the displacement of object monitoring points increased in a "wavy" shape at intervals of 24 hours with no convergence trend, which may cause the overall instability of the slope; 3) taking Pix8 as an example, combined with a temperature monitoring, the theoretical calculation results agreed with the monitoring data, which revealed the reason why the s-t curve increased in wave shape. It is concluded that the deformation of mass concrete in an atmospheric temperature field has the characteristic of "lag effect".

Key words: loess, high fill slope, supporting structure, deformation, monitoring

中图分类号: 

  • P225
[1] 张硕,裴向军,黄润秋, 等. 黄土高填方坡体加载过程变形-力学响应特征研究[J]. 工程地质学报, 2017, 25(3):657-670. Zhang Shuo, Pei Xiangjun, Huang Runqiu, et al. Loading Deformation Process and Mechanical Characteristics of High Fill Loess Slope[J]. Journal of Engineering Geology, 2017, 25(3):657-670.
[2] 庄建琦, 彭建兵, 张利勇.不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版),2013, 43(3):867-876. Zhuang Jianqi, Peng Jianbing, Zhang Liyong. Risk Assessment and Prediction of the Shallow Landslide at Different Precipitation in Loess Plateau[J]. Journal of Jilin University(Earth Science Edition),2013, 43(3):867-876.
[3] 朱才辉,李宁,刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013, 35(2):293-301. Zhu Caihui, Li Ning, Liu Mingzhen, et al. Spatiotemporal Laws of Post-Construction Settlement of Loess-Filled Foundation of Lüliang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2):293-301.
[4] 谢春庆,潘凯,廖崇高, 等. 西南某机场高填方边坡滑塌机制分析与处理措施研究[J]. 工程地质学报, 2017, 25(4):1083-1093. Xie Chunqing, Pan Kai, Liao Chonggao, et al. Landslide Mechanism and Treatment Measures for High Fill Slope at Airport in Southwestern China[J]. Journal of Engineering Geology, 2017, 25(4):1083-1093.
[5] 宋焱勋,彭建兵,张骏. 黄土填方高边坡变形破坏机制分析[J]. 工程地质学报, 2008, 16(5):620-624. Song Yanxun, Peng Jianbing, Zhang Jun. Deformation Mechanism of High Loess Embankment Slope[J]. Journal of Engineering Geology, 2008, 16(5):620-624.
[6] 李中国. 基于结构-土相互作用的高填方锚索桩板墙设计理论的研究[D]. 北京:中国铁道科学研究院, 2010. Li Zhongguo. Research on Design Theory of Anchored Soldier Pile and Lagging Wall for High Embankment Based on Structure-Soil Interaction[D]. Beijing:China Academy of Railway Sciences,2010.
[7] 冯文强. 高填方边坡抗滑组合结构的有限元分析[D]. 兰州:兰州交通大学, 2014. Feng Wenqiang. Finite Element Analysis on Anti-Slide Composite Structure in High Fill Slope[D]. Lanzhou:Lanzhou Jiaotong University,2014.
[8] 余红楚,左小清,字陈波, 等. IBIS-L系统与TM30全站仪在边坡变形监测中的对比分析[J]. 大地测量与地球动力学, 2015, 35(4):718-721. Yu hongchu, Zuo Xiaoqing, Zi Chenbo, et al. Comparative Analysis of IBIS-L System and TM30 Total Station in Monitoring Slope Deformation[J]. Journal of Geodesy and Geodynamics, 2015, 35(4):718-721.
[9] 刘艳. 地面干涉雷达IBIS-L红石岩堰塞湖边坡监测研究[D]. 昆明:昆明理工大学, 2016. Liu Yan. Study on Slope Monitoring of Hogshiyan Barrier Lake with Ground Interference Radar IBIS-L[D]. Kunming:Kunming University of Science and Technology, 2016.
[10] 孙亚光. 地面雷达与常规测量在边坡监测中的比较研究[D]. 昆明:昆明理工大学, 2016. Sun Yaguang. Comparative Study of Ground Radar and Conventional Measurement in Slope Monitoring[D]. Kunming:Kunming University of Science and Technology, 2016.
[11] 肖先煊, 许强,刘家春, 等. IBIS-L在滑坡地表变形监测中的应用:以宁南县白水河滑坡为例[J]. 长江科学院院报,2015,32(8):45-50. Xiao Xianxuan, Xu Qiang, Liu Jiachun, et al. Application of IBIS-L to the Monitoring of Landslide Deformation:Case Study of Baishuihe Landslide in Southwest China[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(8):45-50.
[12] 刘斌, 葛大庆, 张玲, 等. 地基雷达干涉测量技术在滑坡灾后稳定性评估中的应用[J]. 大地测量与地球动力学,2016,36(8):674-677. Liu Bin, Ge Daqing, Zhang Ling, et al. Application of Monitoring Stability After Landslide Based on Ground-Based InSAR[J]. Journal of Geodesy and Geodynamics, 2016, 36(8):674-677.
[13] 陈龙,张建军,陈高峰. 地形微变远程监测仪在地表微变形监测中的应用[J]. 人民长江,2011, 42(23):91-93. Chen Long, Zhang Jianjun, Chen Gaofeng. Application of IBIS-L System in Micro-Deformation Monitoring of Ground Surface[J]. Yangtze River, 2011, 42(23):91-93.
[14] 刁建鹏,梁光胜. 地面雷达的位移监测试验研究[J].测绘科学,2011, 36(2):62-64. Diao Jianpeng, Liang Guangsheng. Experimental Study on Monitoring Displacement by Ground-Based Radar[J]. Science of Surveying and Mapping, 2011, 36(2):62-64.
[15] 黄其欢,岳建平,贡建兵. GBInSAR隔河岩大坝变形监测试验[J].水利水电科技进展, 2016,36(3):47-51. Huang Qihuan, Yue Jianping, Gong Jianbing. Monitoring of Geheyan Dam Deformation Using GBInSAR Technology[J]. Advances in Science and Technology of Water Resources, 2016, 36(3):47-51.
[16] 邱志伟,岳建平,汪学琴. 地基雷达系统IBIS-L在大坝变形监测中的应用[J].长江科学院院报, 2014, 31(10):104-107. Qiu Zhiwei, Yue Jianping, Wang Xueqin. Application of Ground-Based Radar System IBIS-L to Dam Deformation Analysis[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(10):104-107.
[17] 刘成宇. 土力学[M]. 北京:中国铁道出版社, 2006. Liu Chengyu. Soil Mechanics[M]. Beijing:China Railway Publishing House, 2006.
[18] Luzi G, Pieraccini M, Mecatti D, et al. Monitoring of an Alpine Glacier by Means of Ground-Based SAR Inter-ferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3):495-499.
[19] 张晔.混凝土坝应力应变观测资料分析及软件研制[D]. 杭州:浙江大学, 2010. Zhang Ye. Study on Stress Strain Observation Data and Software Development[D]. Hangzhou:Zhejiang University, 2010.
[20] 蒋建华,袁迎曙,张习美.自然气候环境的温度作用谱和混凝土内温度响应预计[J]. 中南大学学报, 2010, 41(5):1924-1930. Jiang Jianhua, Yuan Yingshu, Zhang Ximei. Action Spectrum of Temperature in Natural Climate Environment and Prediction of Temperature Response in Concrete[J]. Journal of Central South University, 2010, 41(5):1924-1930.
[21] 李廉锟.结构力学[M]. 北京:高等教育出版社, 2004. Li Liankun. Structural Mechanics[M]. Beijing:Higher Education Press, 2004.
[22] 混凝土结构设计规范GB 50010-2010[S]. 北京:中国建筑工业出版社,2010. Code for Design of Concrete Structures GB 50010-2010[S]. Beijing:China Architecture & Building Press, 2010.
[1] 张丙先. 西藏玉曲河下游岸坡倾倒变形机制及稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1539-1545.
[2] 唐军峰, 唐雪梅, 曾向农, 杨军, 李学政. 蓄水后库岸堆积体边坡变形特征及其稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1546-1555.
[3] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[4] 马德龙, 何登发, 魏东涛, 王彦君, 魏彩茹. 准噶尔盆地南缘古牧地背斜多期构造变形特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1695-1704.
[5] 彭湘林, 范文, 魏亚妮, 田陆, 邓龙胜. 黄土高原城市工程地质分区——以铜川地区为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1480-1490.
[6] 韩朋, 翟云峰, 栗粲圪, 张运, 杨会会, 靳春胜. 末次间冰期以来洛川黄土天然剩磁记录的可靠性[J]. 吉林大学学报(地球科学版), 2017, 47(3): 793-806.
[7] 张泽, 周泓, 秦琦, 邴慧, 武俊杰, 周攀峰. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版), 2017, 47(3): 839-847.
[8] 崔建军, 王艳红, 郑光高, 施炜, 马立成. 大悟杂岩的形成和抬升时代及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 139-153.
[9] 吴建光, 张平, 吕昊, 曾晓献. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 255-264.
[10] 刘兰兰, 李鸿儒, 常秋影, 李晓乐, 王洪宇, 赵传海. 非饱和土增湿变形的实用计算方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1790-1798.
[11] 刘勃然, 李伟, 张守志, 彭甜明, 冯志强. 大兴安岭北段伸展构造[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1440-1448.
[12] 潘建立. 顶管施工引起土体变形的计算方法及应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1458-1465.
[13] 王福平, 李鹏, 李国琳, 彭枧明. 基于Ls-Dyna的高能射流式冲击器活塞杆回程应力分析[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1482-1489.
[14] 杜芳鹏, 王建强, 牛军强, 谭富荣, 杨创, 闫明明. 羌塘地块东南部上三叠统巴贡组软沉积变形特征及其意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 661-670.
[15] 吴林, 陈清华, 庞飞, 史鹏. 下扬子地区中新生代构造变形单元及构造变形样式[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1722-1734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!