吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 378-391.doi: 10.13278/j.cnki.jjuese.20190247

• 油页岩成矿与资源评价 • 上一篇    下一篇

老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素

宋宇1,2, 刘招君2,3, Achim Bechtel4, 徐银波5, 孟庆涛2,3, 孙平昌2,3, 朱凯1   

  1. 1. 构造与油气资源教育部重点实验室(中国地质大学(武汉)), 武汉 430074;
    2. 吉林省油页岩与共生能源矿产重点实验室, 长春 130061;
    3. 吉林大学地球科学学院, 长春 130061;
    4. 莱奥本矿业大学应用地球科学与地球物理系, 奥地利 莱奥本A-8700;
    5. 中国地质调查局油气资源调查中心, 北京 100083
  • 收稿日期:2019-11-23 出版日期:2020-03-26 发布日期:2020-03-31
  • 作者简介:宋宇(1989-),男,副教授,博士,主要从事非常规油气地球化学研究,E-mail:songyu@cug.edu.cn
  • 基金资助:
    国家自然科学基金项目(41902139);吉林省油页岩与共生能源矿产重点实验室开放基金(DBY-ZZ-18-04)

Controlling Factors of Oil Shale and Coal Oil Yield in Lower Cretaceous Muling Formation in Laoheishan Basin

Song Yu1,2, Liu Zhaojun2,3, Achim Bechtel4, Xu Yinbo5, Meng Qingtao2,3, Sun Pingchang2,3, Zhu Kai1   

  1. 1. Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences), Ministry of Education, Wuhan 430074, China;
    2. Key Laboratory of Oil Shale and Coexistent Energy Minerals of Jilin Province, Changchun 130061, China;
    3. College of Earth Sciences, Jilin Universiry, Changchun 130061, China;
    4. Department of Applied Geosciences and Geophysics, Montanuniversitaet Leoben, Leoben A-8700, Austria;
    5. Oil&Gas Survey Center, China Geological Survey, Beijing 100083, China
  • Received:2019-11-23 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by National Natural Science Foundation of China (41902139) and Open Fund of Key Laboratory of Oil Shale and Coexistent Energy Minerals of Jilin Province (DBY-ZZ-18-04)

摘要: 我国陆相盆地内普遍存在油页岩与煤共生的地质现象。本文以老黑山盆地下白垩统穆棱组油页岩与煤为研究对象,基于工业分析(含油率、灰分、挥发分、全硫和发热量)和有机地球化学分析(有机碳、岩石热解、显微组分和生物标志化合物),对油页岩与煤含油率的控制因素开展研究。根据含油率等工业品质特征,将研究区油页岩与煤进一步划分为高含油率油页岩(HOS)、低含油率油页岩(LOS)、高含油率煤(HC)和低含油率煤(LC)4种亚类。其中HC的总有机碳质量分数和生烃潜力最高,其次为LC、HOS和LOS,4种亚类的有机质类型以Ⅱ型干酪根为主,均处于未成熟的热演化阶段。沉积环境与有机质来源是控制油页岩与煤含油率的关键因素,HOS主要形成于陆源有机质供给中等的湖沼环境,而HC主要形成于陆源有机质供给丰富的泥炭沼泽环境。油页岩与煤形成时期的高等植物以松科、柏科/杉科、南洋杉科、罗汉松科和蕨类植物为主,这些植物可以提供充足的树脂和蜡质有机质,从而使油页岩与煤具有相对较高的含油率。

关键词: 老黑山盆地, 下白垩统, 油页岩与煤, 含油率, 有机地球化学

Abstract: The paragenetic oil shale and coal are widely developed in continental basins of China. The authors took the oil shale and coal of the lower Cretaceous Muling Formation in Laoheishan basin as a study object, and studied the controlling factors of oil yield of oil shale and coal, combined with both industrial parameters (oil yield, ash content, volatile matter, total sulfur, and gross calorific value) and organic geochemical analyses (total organic carbon, Rock-Eval, maceral, and biomarker analyses). The oil shale and coal are classified into four types, including high oil yield oil shale (HOS), low oil yield oil shale (LOS), high oil yield coal (HC), and low oil yield coal (LC). The highest TOC and S1+S2 values are observed in HC, followed by LC, HOS, and LOS, all types are of type Ⅱ kerogen and in immature stage. The source of organic matter and depositional environment are the key controlling factors of oil yield in oil shale and coal. HC was deposited in mire with abundant input of terrestrial organic matter; in contrast, HOS was formed in limnology environment with moderate input of terrestrial organic matter. The floral assemblage is characterized by the presence of Pinaceae, Cupressaceae/Taxodiaceae, Araucariaceae, Podocarpaceae and ferns during the formation of oil shale and coal. These plants could provide abundant resinous and waxy organic matter, which lead to relatively high oil yield of oil shale and coal.

Key words: Laoheishan basin, Lower Cretaceous, oil shale and coal, oil yield, ornigac geochemistry

中图分类号: 

  • P618.12
[1] Reesman L A. Energy Resources in Colorado:Coal, Oil Shale, and Uranium[J]. Nuclear Technology, 1981, 54(1):124.
[2] 刘招君,孙平昌,柳蓉,等.页岩能源共生矿产成矿(藏)地质条件研究:以松辽盆地上白垩统青山口组为例[J]. 沉积学报,2014, 32(3):593-600. Liu Zhaojun, Sun Pingchang, Liu Rong, et al. Research on Geological Conditions of Shale Coexistent Energy Mineralization (Accumulation):Take the Qingshankou Formation in Upper Cretaceous, Songliao Basin for Example[J]. Acta Sedimentologica Sinica, 2014, 32(3):593-600.
[3] Sun P C, Liu Z J, Bai Y Y, et al. Accumulation Stages and Evolution Characteristics of Oil Shale and Coal in the Dunhua-Mishan Fault Zone, Northeast China[J]. Oil Shale, 2016, 33(3):203-215.
[4] 刘招君,杨虎林,董清水,等.中国油页岩[M]. 北京:石油工业出版社,2009. Liu Zhaojun, Yang Hulin, Dong Qingshui, et al. Oil Shale in China[M]. Beijing:Petroleum Industry Press, 2009.
[5] 王东东,李增学,吕大炜,等.陆相断陷盆地煤与油页岩共生组合及其层序地层特征[J]. 地球科学,2016, 41(3):508-522. Wang Dongdong, Li Zengxue, Lü Dawei, et al. Coal and Oil Shale Paragenetic Assemblage and Sequence Stratigraphic Features in Continental Faulted Basin[J]. Earth Science, 2016, 41(3):508-522.
[6] 冯婷婷,李增学,吕大炜,等.内蒙古金宝屯矿区煤与油页岩共生沉积环境及层序演化[J]. 中国煤炭,2015, 41(2):30-34, 44. Feng Tingting, Li Zengxue, Lü Dawei, et al. Symbiotic Sedimentary Environment and Sequence Evolution of Coal and Oil Shale in Jinbaotun Mining Area in Inner Mongolia[J]. China Coal, 2015, 41(02):30-34, 44.
[7] Song Y, Bechtel A, Sachsenhofer R F, et al. Depositional Environment of the Lower Cretaceous Muling Formation of the Laoheishan Basin (NE China):Implications from Geochemical and Petrological Analyses[J]. Organic Geochemistry, 2017, 104:19-34.
[8] 许文良,王枫,孟恩,等.黑龙江省东部古生代-早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版),2012, 42(5):1378-1389. Xu Wenliang, Wang Feng, Meng En, et al. Paleozoic-Early Mesozoic Tectonic Evolution in the Eastern Heilongjiang Province, NE China:Evidence from Igneous Rock Association and U-Pb Geochronology of Detrital Zircons[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5):1378-1389.
[9] Song Y, Liu Z J, Meng Q T, et al. Petrography and Geochemistry Characteristics of the Lower Cretaceous Muling Formation from the Laoheishan Basin, Northeast China:Implications for Provenance and Tectonic Setting[J]. Mineralogy and Petrology, 2017, 111:383-397.
[10] 中国煤炭分类:GB/T 5751-2009[S]. 北京:中国标准出版社,2009. Chinese Classification of Coals:GB/T 5751-2009[S]. Beijing:Standards Press of China, 2009.
[11] 煤的工业分析方法:GB/T 212-2008[S]. 北京:中国标准出版社,2008. Proximate Analysis of Coal:GB/T 212-2008[S]. Beijing:Standards Press of China, 2008.
[12] 沉积岩中总有机碳的测定:GB/T 19145-2003[S]. 北京:中国标准出版社,2003. Determination of Total Organic Carbon in Sedimentary Rock:GB/T 19145-2003[S]. Beijing:Standards Press of China, 2003.
[13] Taylor H, Teichmuller M, Davis A, et al. Organic Petrology[M]. Borntraeger:Berlin-Stuttgart, 1998.
[14] Sachsenhofer R F, Bechtel A, Reischenbacher D, et al. Evolution of Lacustrine Systems Along the Miocene Mur-Mürz Fault System (Eastern Alps, Austria) and Implications on Source Rocks in Pull-Apart Basins[J]. Marine and Petroleum Geology, 2003, 20:83-110.
[15] Nali M, Caccialanza G, Ghiselli C, et al. Tmax of Asphaltenes:A Parameter for Oil Maturity Assessment[J]. Organic Geochemistry, 2000, 31:1325-1332.
[16] Guo Y, Bustin R M. Micro-FTIR Spectroscopy of Liptinite Macerals in Coal[J]. International Journal of Coal Geology, 1998, 36:259-275.
[17] Bechtel A, Reischenbacher D, Sachsenhofer R F, et al. Paleogeography and Paleoecology of the Upper Miocene Zillingdorf Lignite Deposit (Austria)[J]. International Journal of Coal Geology, 2007, 69(3):119-143.
[18] Eglinton G, Hamilton R J. Leaf Epicuticular Waxes[J]. Science, 1967, 156:1322.
[19] Ficken K J, Li B, Swain D L, et al. An n-Alkane Proxy for the Sedimentary Input of Submerged/Floating Freshwater Aquatic Macrophytes[J]. Organic Geochemistry, 2000, 31(7/8):745-749.
[20] Cranwell P A. Organic Geochemistry of Cam Loch (Sutherland) Sediments[J]. Chemical Geology, 1977, 20(3):205-221.
[21] Brook J D, Gould K, Smith J W. Isoprenoid Hydrocarbons in Coal and Petroleum[J]. Nature, 1969, 222:257-259.
[22] Powell T G, McKirdy D M. Relationship Between Ratio of Pristane to Phytane, Crude Oil Composition and Geological Environment in Australia[J]. Nature, 1973, 243:37-39.
[23] Blumer M, Mullin M M, Thomas D W. Pristane in Zooplankton[J]. Science, 1963, 140:974.
[24] Blumer M, Snyder W D. Isoprenoid Hydrocarbons in Recent Sediments:Presence of Pristane and Probable Absence of Phytane[J]. Science, 1965, 150:1588-1589.
[25] Blumer M, Thomas D W. "Zamene", Isomeric C19 Monoolefins from Marine Zooplankton, Fishes and Mammals[J]. Science, 1965, 148:370-371.
[26] Goossens H, de Leeuw J W, Schenck P A, et al. Tocopherols as Likely Precursors of Pristane in Ancient Sediments and Crude Oils[J]. Nature, 1984, 312:440-442.
[27] Navale V. Comparative Study of Low and High Temperature Hydrous Pyrolysis Products of Monoglyceryl Diether Lipid from Archaebacteria[J]. Journal of Analytical and Applied Pyrolysis, 1994, 29:33-43.
[28] de Graaf W, Sinninghe Damsté J S, de Leeuw J W. Laboratory Simulation of Natural Sulphurization:I:Formation of Monomeric and Oligomeric Isoprenoid Polysulphides by Low-Temperature Reactions of Inorganic Polysulphides with Phytol and Phytadienes[J]. Geochimica et Cosmochimica Acta, 1992, 56:4321-4328.
[29] Radke M, Schaefer R G, Leythaeuser D, et al. Composition of Soluble Organic Matter in Coals:Relation to Rank and Liptinite Fluorescence[J]. Geochimica et Cosmochimica Acta, 1980, 44:1787-1800.
[30] Koopmans M P, Rijpstra W I C, Klapwijk M M, et al. A Thermal and Chemical Degradation Approach to Decipher Pristane and Phytane Precursors in Sedimentary Organic Matter[J]. Organic Geochemistry, 1999, 30:1089-1104.
[31] Peters K E, Walters C C, Molkowan J M. The Biomarker Guide[M]. Cambridge:Cambridge University Press, 2005.
[32] Song Y, Liu Z J, Bechtel A, et al. Paleoenvironmental Reconstruction of the Coal- and Oil Shale-Bearing Interval in the Lower Cretaceous Muling Formation, Laoheishan Basin, Northeast China[J]. International Journal of Coal Geology, 2017, 172:1-18.
[33] Volkman J K, Allen D I, Stevenson P L, et al. Bacterial and Algal Hydrocarbons from a Saline Antarctic Lake, Ace Lake[J]. Organic Geochemistry, 1986, 10:671-681.
[34] Volkman J K, Barrett S M, Blackburn S I. Eustigmatophyte Microalgae are Potential Sources of C29 Sterols, C22-C28 n-Alcohols and C28-C32 n-Alkyl Diols in Freshwater Environments[J]. Organic Geochemistry, 1999, 30:307-318.
[35] Ourisson G, Albrecht P, Rohmer M. The Hopanoids:Palaeochemistry and Biochemistry of a Group of Natural Products[J]. Pure and Applied Chemistry, 1979, 51:709-729.
[36] Hussler G, Albrecht P, Ourisson G, et al. Benzohopanes, a Novel Family of Hexacyclic Geomarkers in Sediments and Petroleums[J]. Tetrahedron Letters, 1984, 25:1179-1182.
[37] Simoneit B R T, Grimalt J G, Wang T G, et al. Cyclic Terpenoids of Contemporary Resinous Plant Detritus and of Fossil Wood, Ambers and Coals[J]. Organic Geochemistry, 1986, 10:877-889.
[38] Otto A, Walther H, Püttman W. Sesqui- and Diterpenoid Biomarkers in Taxodium-Rich Oligocene Oxbow Lake Clays Weisselster Basin, Germany[J]. Organic Geochemistry, 1997, 26:105-115.
[39] Simoneit B R T. Cyclic Terpenoids of the Geosphere[M]//Jones R B. Biological Markers in the Sedimentary Record. New York:Elsevier, 1986.
[40] Hauke V, Graff R, Wehrung P, et al. Novel Triterpene-Derived Hydrocarbons of the Arborane/Fernane Series in Sediments:Part II[J]. Geochimica et Cosmochimica Acta, 1992, 56:3595-3602.
[41] 刘招君,孙平昌,柳蓉,等.中国陆相盆地油页岩成因类型及矿床特征[J]. 古地理学报,2016, 18(4):525-534. Liu Zhaojun, Sun Pingchang, Liu Rong, et al. Genetic Types and Deposit Features of Oil Shale in Continental Basin in China[J]. Journal of Palaeogeography, 2016, 18(4):525-534.
[42] ten Haven H L, Rohmer M, Rullkoetter J, et al. Tetrahymanol, the Most Likely Precursor of Gammacerane, Occurs Ubiquitously in Marine Sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53:3073-3079.
[43] Sinninghe Damsté J S, Kenig F, Koopmans M P, et al. Evidence for Gammacerane as an Indicator of Water Column Stratification[J]. Geochimica et Cosmochimica Acta, 1995, 59:1895-1900.
[44] van Aarssen B G K, Cox H C, Hoogendoorn P, et al. A Cadinene Biopolymer Present in Fossil and Extant Dammar Resins as a Source for Cadinanes and Bicadinanes in Crude Oils from Southeast Asia[J]. Geochimica et Cosmochimica Acta, 1990, 54:3021-3031.
[1] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[2] 柳蓉, 闫旭, 刘招君, 张坤, 武昕普, 赵康安. 银额盆地下白垩统巴音戈壁组含油页岩岩系孢粉化石特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 341-355.
[3] 贾建亮, 刘招君, 孟庆涛, 孙平昌, 徐进军, 柳蓉, 白悦悦. 中国陆相油页岩含油率与总有机碳的响应机理[J]. 吉林大学学报(地球科学版), 2020, 50(2): 368-377.
[4] 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284.
[5] 尤金凤, 邢立新, 潘军, 单玄龙, 樊瑞雪, 曹会. 基于Hyperion数据的油砂分布遥感研究[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1589-1597.
[6] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
[7] 谢尚克,杜佰伟,王剑,彭清华,郑博. 西藏伦坡拉盆地油页岩特征及分布规律[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1760-1767.
[8] 李军辉. 海拉尔盆地呼和湖凹陷下白垩统层序构成样式及油气成藏模式[J]. J4, 2012, 42(4): 961-969.
[9] 朱建伟, 赵刚, 刘博, 郭巍, 成俊. 油页岩测井识别技术及应用[J]. J4, 2012, 42(2): 289-295.
[10] 谢其锋, 周立发, 何明喜. 南华北盆地谭庄凹陷下白垩统储层类型及次生孔隙成因[J]. J4, 2010, 40(3): 503-508.
[11] 李忠雄, 何江林, 熊兴国, 吴涛, 白培荣. 藏北羌塘盆地上侏罗-下白垩统胜利河油页岩特征及其形成环境[J]. J4, 2010, 40(2): 264-272.
[12] 高福红, 高红梅, 樊馥. 漠河盆地早白垩世依列克得组火山岩系烃源岩有机地球化学特征[J]. J4, 2010, 40(1): 9-14.
[13] 唐华风,王璞珺,姜传金,刘杰,张庆晨,冯有良. 松辽盆地火山岩相地震特征及其与控陷断裂的关系[J]. J4, 2007, 37(1): 73-0078.
[14] 张雷, 刘招君,杜江峰,贺君玲,张健,任玉学,王建东. 吉林省松江盆地下白垩统大砬子组油页岩特征[J]. J4, 2006, 36(6): 996-1000.
[15] 孟庆涛,刘招君,柳蓉,王永莉. 松辽盆地农安地区上白垩统油页岩含油率影响因素[J]. J4, 2006, 36(6): 963-0968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!