吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 608-616.doi: 10.13278/j.cnki.jjuese.20190252

• 油气勘探开发 • 上一篇    下一篇

基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测——以保德和韩城区块为例

侯伟1, 赵天天2,3, 张雷1, 熊先钺1, 许浩2,3, 巢海燕1, 张伟1, 王伟1, 张慧1   

  1. 1. 中石油煤层气有限责任公司, 北京 100028;
    2. 中国地质大学(北京)能源学院, 北京 100083;
    3. 中国地质大学(北京)煤层气国家工程中心煤储层实验室, 北京 100083
  • 收稿日期:2019-11-20 出版日期:2020-03-26 发布日期:2020-03-31
  • 作者简介:侯伟(1981-),男,高级工程师,博士,主要从事石油天然气地质研究,E-mail:houweinan@163.com
  • 基金资助:
    国家科技重大专项(2016ZX05042-002);中国石油天然气股份有限公司重大科技专项(2017E-1405)

Stress Sensitivity and Prediction of Irreducible Water Saturation in Coal Reservoirs in Baode and Hancheng Blocks Based on Low-Field Nuclear Magnetic Resonance

Hou Wei1, Zhao Tiantian2,3, Zhang Lei1, Xiong Xianyue1, Xu Hao2,3, Chao Haiyan1, Zhang Wei1, Wang Wei1, Zhang Hui1   

  1. 1. Petrochina Coalbed Methane Company Limited, Beijing 100028, China;
    2. School of Energy Resources, China University of Geosciences(Beijing), Beijing 100083, China;
    3. State Key Laboratory of Coal Reservoir of National Engineering Research Center of Coalbed Methane Development&Utilization, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2019-11-20 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by Key Project of National Science & Technology, China (2016ZX05042-002) and Major Science and Technology Projects of China National Petroleum Corporation (2017E-1405)

摘要: 煤层气开发过程中储层应力的变化对束缚水饱和度有重要影响。通过对不同煤阶煤储层的煤样进行覆压低场核磁共振系列实验,采用谱图形态经验判定法对核磁T2截止值进行标定,在此基础上分析了不同煤阶储层束缚水饱和度随应力的变化规律,并对保德和韩城区块的束缚水饱和度开展了动态计算。实验结果表明:束缚水饱和度具有较强的应力敏感性,并且在有效应力增加初期变化最为强烈;由于孔隙结构的差异,这种应力敏感性在保德区块表现得更为强烈。动态预测结果表明:由于保德区块储层埋深变化范围较小,其初始束缚水饱和度受埋深影响的总变化量小于韩城区块;埋深较浅的储层束缚水饱和度在开发过程中的应力敏感性更强,但开发过程进行到末期后,束缚水饱和度总的增加幅度基本一致。

关键词: 煤储层, 低场核磁共振, 束缚水饱和度, 应力响应, 煤层气, 开发动态

Abstract: The stress change has an important influence on the irreducible water saturation in the process of coalbed methane development. A series of nuclear magnetic resonance (NMR) experiments were performed on the coal samples from different rank coal reservoirs, the T2 cut-off value was calibrated by the empirical determination method of spectral pattern,the variation of irreducible water saturation with stress in different coal rank reservoirs was evaluated, and further, its dynamic changes with the development of coalbed methane in the study area were also predicted. The experimental results show that the irreducible water saturation has a strong stress sensitivity, and its change is the strongest at the initial stage of effective stress increase. Due to the difference of pore structure, the stress sensitivity is more intense in Baode block. The predicting result in Baode block shows that the total variation of initial irreducible water saturation affected by buried depth is smaller than that in Hancheng block because of the small variation range of buried depth in Baode block. In the process of coalbed methane development, the irreducible water saturation of shallow buried reservoirs has a stronger stress sensitivity, but the overall increase is basically the same at the end of the development process.

Key words: coal reservoir, low-field nuclear magnetic, irreducible water saturation, stress response, coalbed methane, developing dynamic

中图分类号: 

  • P618.13
[1] 汤达祯, 刘大锰, 唐书恒, 等. 煤层气开发过程储层动态地质效应[M]. 北京:科学出版社, 2014. Tang Dazhen, Liu Dameng, Tang Shuheng, et al. Dynamic Geological Effect of Reservoir During Development of Coalbed Methane[M]. Beijing:Science Press, 2014.
[2] Moore T A. Coalbed Methane:A Review[J]. International Journalof Coal Geology, 2012, 101:36-81.
[3] 孟召平, 侯泉林. 煤储层应力敏感性及影响因素的试验分析[J]. 煤炭学报, 2012, 37(3):430-437. Meng Zhaoping, Hou Quanlin. Experimental Research on Stress Sensitivity of Coal Reservoir and Its Influencing Factors[J]. Journal of China Coal Society, 2012, 37(3):430-437.
[4] 孟召平, 张纪星, 刘贺, 等. 考虑应力敏感性的煤层气井产能模型及应用分析[J]. 煤炭学报, 2014, 39(4):593-599. Meng Zhaoping, Zhang Jixing, Liu He, et al. Productivity Model of CBM Wells Considering the Stress Sensitibity and Its Application Analysis[J]. Journal of China Coal Society, 2014, 39(4):593-599.
[5] 陶树. 沁南煤储层渗透率动态变化效应及气井产能响应[D]. 北京:中国地质大学(北京), 2011. Tao Shu. Dynamic Variation Effects of Coal Reservoir Permeability and the Response of Gas Productivity in Southern Qinshui Basin[D]. Beijing:China University of Geosciences (Beijing), 2011.
[6] Durucan S, Edwards J.The Effects of Stress and Fracturing on Permeability of Coal[J]. Mining Science and Technology, 1986, 3(3):205-216.
[7] Palmer I, Mansoori J.How Permeability Depends on Stress and Pore Pressure in Coalbeds:A New Model[C]//SPE Annual Technical Conference and Exhibition. Denver:Society of Pertoleum Engineers, 1996:557-564.
[8] Seidle J, Jeansonne M, Erickson D.Application of Matchstick Geometry to Stress Dependent Permeability in Coals[C]//SPE Rocky Mountain Regional Meeting. Casper:Society of Petroleum Engineers, 1992:433-444.
[9] Somerton W H, Söylemezolu I, Dudley R. Effect of Stress on Permeability of Coal[C]//International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts. New Orleans:Society of Petrophysicists and Well-Log Analysts, 1975:129-145.
[10] 热依拉·阿布都瓦依提, 马凤云, 张翔, 等. 低场核磁共振技术在煤炭岩相孔隙结构中的应用[J]. 核技术, 2017, 40(12):47-52. Rahila·Abduwahit, Ma Fengyun, Zhang Xiang, et al. Application of Low-Field Nuclear Magnetic Resonance Technology in Coal Petrographic Pore Structure[J]. Nuclear Techniques, 2017, 40(12):47-52.
[11] Lai F P, Li Z P, Dong H K, et al. Micropore Structure Characteristics and Water Distribution in a Coalbed Methane Reservoir[J]. Australian Journal of Earth Sciences, 2019, 66(5):741-750.
[12] Yan X L, Zhang S H, Tang S H, et al. Prediction Model of Coal Reservoir Pressure and Its Implication for the Law of Coal Reservoir Depressurization[J]. Acta Geologica Sinica-English Edition, 2019, 93(3):692-703.
[13] Adenutsi C D, Li Z, Xu Z, et al. Influence of Net Confining Stress on Nmr T2 Distribution and Two-Phase Relative Permeability[J]. Journal of Petroleum Science and Engineering, 2019, 178:766-777.
[14] 刘彦飞, 汤达祯, 许浩, 等. 基于核磁共振的煤岩孔裂隙应力变形特征[J]. 煤炭学报, 2015, 40(6):1415-1421. Liu Yanfei, Tang Dazhen, Xu Hao, et al. Characteristics of the Stress Deformation of Pore-Fracture in Coal Based on Nuclear Magnetic Resonance[J]. Journal of Coal Society, 2015, 40(6):1415-1421.
[15] 刘玉龙, 汤达祯, 许浩, 等. 不同围压下中煤阶煤岩孔裂隙核磁共振响应特征[J]. 煤炭科学技术, 2016, 44(增刊1):149-153. Liu Yulong, Tang Dazhen, Xu Hao, et al. Characteristics of Medium Rank Coal Pore-Fracture Nuclear Magnetic Resonance Under Different Pressures[J]. Coal Science and Technology, 2016, 44(Sup. 1):149-153.
[16] 宋明会. 核磁共振录井可动流体T2截止值确定方法[J]. 录井工程, 2007(3):5-8. Song Minghui. Determination of T2 Cutoff Value for Mobile Fluid in NMR Logging[J]. Mud Logging Engineering, 2007(3):5-8.
[17] 司马立强, 殷榕, 王亮, 等. 准噶尔盆地头屯河组低电阻率油层束缚水饱和度确定方法[J]. 测井技术, 2019, 43(2):122-128. Sima Liqiang, Yin Rong, Wang Liang, et al. Determining Methods of the Irreducible Water Saturation of Low-Resistivity Oil Layers in Toutunhe Formation, Junggar Basin[J]. Well Logging Technology, 2019, 43(2):122-128.
[18] 苏俊磊, 王艳, 孙建孟. 应用可变T2截止值确定束缚水饱和度[J]. 吉林大学学报(地球科学版), 2010, 40(6):1491-1495. Su Junlei, Wang Yan, Sun Jianmeng. Application of Variable T2 Cutoff Value to Determine Irreducible Water Saturation[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(6):1491-1495.
[19] 吕玉民, 胡爱梅, 汤达祯, 等. 煤中水可动性的核磁共振响应及其影响因素[J]. 高校地质学报, 2012, 18(3):549-552. Lü Yumin, Hu Aimei, Tang Dazhen, et al. Nuclear Magnetic Resonance (NUM) Response of Mobile Water in Coals and Influence Factors[J]. Geological Journal of China Universities, 2012, 18(3):549-552.
[20] 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学:地球科学, 2010, 40(11):1598-1607. Yao Yanbin, Liu Dameng, Cai Yidong, et al. Advanced Characterizaiton of Pores and Fractures in Coals by Nuclear Magnetic Resonance and X-Ray Computed Tomography[J]. Science China:Earth Science, 2010, 40(11):1598-1607.
[21] Timur A. Pulsed Nuclear Magnetic Resonance Studies of Porosity, Movable Fluid, and Permeability of Sandstones[J]. Journal of Petroleum Technology, 1969, 21(6):775-786.
[22] Kenyon W. Nuclear Magnetic Resonance as a Petrophysical Measurement[J]. Nuclear Geophysics, 1992, 6(2):153-171.
[23] 龚国波, 孙伯勤, 刘买利, 等. 岩心孔隙介质中流体的核磁共振弛豫[J]. 波谱学杂志, 2006,23(3):379-395. Gong Guobo, Sun Boqin, Liu Maili, et al. NMR Relaxation of the Fluid in Rock Porous Media[J]. Chinese Journal of Magnetic Resonance, 2006, 23(3):379-395.
[24] 傅雪海, 秦勇, 韦重韬.煤层气地质学[M]. 徐州:中国矿业大学出版社, 2007. Fu Xuehai, Qin Yong, Wei Chongtao. Coalbed Methane Geology[M]. Xuzhou:China University of Ming and Technology Press, 2007.
[25] 安世岗, 吴联君, 向军文. 山西保德中低阶煤层气地质特征[J]. 能源与环保, 2018, 40(3):60-65. An Shigang, Wu Lianjun, Xiang Junwen. Geological Characteristics of Middle and Low Rank Coalbed Methane in Baode County of Shanxi Province[J]. China Energy and Environmental Protection, 2018, 40(3):60-65.
[26] 陈振宏, 王勃, 宋岩. 韩城地区煤层气成藏条件评价[J]. 天然气地球科学, 2006,17(6):868-870. Chen Zhenhong, Wang Bo, Song Yan. Evaluation the Condition of CBM Reservoir, Hancheng Area[J]. Natural Gas Geoscience, 2006,17(6):868-870.
[1] 张雷, 樊洪波, 侯伟, 张伟, 郝帅, 孙晓光. 煤层气井产出剖面测试技术及应用[J]. 吉林大学学报(地球科学版), 2020, 50(2): 617-626.
[2] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[3] 刘鹏, 王伟锋, 孟蕾, 姜帅. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 692-701.
[4] 吴健, 胡向阳, 梁玉楠, 汤翟, 郑香伟. 珠江口盆地低阻油层饱和度评价方法[J]. 吉林大学学报(地球科学版), 2015, 45(1): 312-319.
[5] 蔡益栋, 刘大锰, 姚艳斌, 李俊乾, 郭晓茜, 张百忍. 鸡西盆地煤层气控气地质特征及有利区分布[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1779-1788.
[6] 陈树旺,甄甄,黄欣,周永恒,鲍庆中,段瑞炎. 俄罗斯东部地区油气资源远景分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1768-1778.
[7] 尚彦军,刘嘉麒,夏燕青,刘大安,雷天柱,张路青. 从水井岩大型滑坡表面高温降解喷出物特征到汶川地震天然气体溢出爆炸模型[J]. 吉林大学学报(地球科学版), 2014, 44(1): 230-248.
[8] 于红岩, 李洪奇, 郭兵, 孙海涛, 张海霞. 基于成因机理的低阻油层精细评价方法[J]. J4, 2012, 42(2): 335-343.
[9] 苏俊磊, 王艳, 孙建孟. 应用可变T2截止值确定束缚水饱和度[J]. J4, 2010, 40(6): 1491-1495.
[10] 李雄炎, 李洪奇, 阴平, 陈亦寒, 周金煜. 柴达木盆地三湖地区第四系低饱和度气层的成因机理[J]. J4, 2010, 40(6): 1241-1247.
[11] 黄布宙,付有升,李舟波,李庆峰,许淑梅,张莹. 拉尔盆地碎屑岩储层束缚水饱和度的确定海[J]. J4, 2008, 38(4): 713-0718.
[12] 杨光,刘俊来,马瑞. 沁水盆地煤岩高温高压实验变形特征[J]. J4, 2006, 36(03): 346-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!