吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1100-1108.doi: 10.13278/j.cnki.jjuese.20180199
杨新乐1, 秘旭晴1, 张永利2, 李惟慷1, 戴文智1, 王亚鹏1, 苏畅1
Yang Xinle1, Bi Xuqing1, Zhang Yongli2, Li Weikang1, Dai Wenzhi1, Wang Yapeng1, Su Chang1
摘要: 为总结注热联合井群开采低渗透储层煤层气运移采出规律,基于传热学、弹性力学、渗流力学、岩石力学理论,建立了注蒸汽开采低渗透储层煤层气藏过程的热固流耦合数学模型。结合潞安矿区山西组3#煤层地质参数,利用有限元软件进行了注热联合井群开采煤层气藏运移规律的数值模拟,得到了不同布井方式下注热10 d、开采100 d过程中煤层温度场、应力场及煤层气渗流场变化规律。结果显示,煤层平均传热速度为1.57 m/d,注热10 d后,中心井35 m范围内为有效注热区;随井筒数量的增加和井间距的减小,井间干扰作用增强,煤储层压力下降加快,煤层气供气及解吸区域增加,累积产量显著增加。七井模型20 m井间距注热开采累积产气量是五井模型30 m井间距未注热开采累积产气量的2.01倍。模拟结果显示了注热和井间干扰开采优势,为低渗透储层煤层气井群注热联合工业开采提供理论依据。
中图分类号:
[1] 冯增朝.低渗透煤层瓦斯强化抽采理论与应用研究[D]. 太原:太原理工大学,2005. Feng Zengchao. The Theory and Its Application on Gas Drainage in Low-Permeability Coal Seams[D]. Taiyuan:Taiyuan University of Technology, 2005. [2] 赵阳升,杨栋,胡耀青,等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2001, 26(5):445-458. Zhao Yangsheng, Yang Dong, Hu Yaoqing, et al. Study on the Effective Technology Way for Mining Methane in Low Permeability Coal Seam[J]. Journal of China Coal Society, 2001, 26(5):455-458. [3] 陈晓智,汤达祯,许浩,等.低、中煤阶煤层气地质选区评价体系[J].吉林大学学报(地球科学版),2012,42(增刊2):115-120. Chen Xiaozhi, Tang Dazhen, Xu Hao, et al. Geological Evaluation System of Potential Coalbed Methane Exploration and Development Blocks with Low and Medium Coal Ranks[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(Sup. 2):115-120. [4] 程瑞端,鲜学福.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998,25(1):13-16. Cheng Ruiduan, Xian Xuefu. Experimental Research on Temperature Effects on the Permeability Coefficient[J]. Coal Engineer, 1998, 25(1):13-16. [5] 李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报,2009,38(4):523-527. Li Zhiqiang, Xian Xuefu, Long Qingming. Experiment Study of Coal Permeability under Different Temperature and Stress[J]. Journal of China University of Mining and Technology, 2009, 38(4):523-527. [6] 李志强,鲜学福,黄滚.地应力地温场中煤层气富集区高精度定量预测的力学方法[J].煤炭学报,2012,37(S2):395-400. Li Zhiqiang, Xian Xuefu, Huang Gun. High Precision and Quantitative Prediction Mechanics Method of Coalbed Methane Enrichment Area in Geo-Stress and Geothermal Field[J]. Journal of China Coal Society, 2012, 37(Sup. 2):395-400. [7] Wang C, Feng J, Liu J, et al. Direct Observation of Coal-Gas Interactions Under Thermal and Mechanical Loadings[J]. International Journal of Coal Geology, 2014, 131:274-287. [8] 马东民,马薇,蔺亚兵.煤层气解吸滞后特征分析[J].煤炭学报,2012,37(11):1885-1889. Ma Dongmin, Ma Wei, Lin Yabing. Desorption Hysteresis Characteristics of CBM[J]. Journal of China Coal Society, 2012, 37(11):1885-1889. [9] 马东民,张辉,王贵荣,等.胡家河井田煤层气等压吸附/解吸特征研究[J].煤炭科学技术,2016,44(4):119-123. Ma Dongmin, Zhang Hui, Wang Guirong, et al. Study on Isobaric Adsorption/Desorption Features of Coalbed Methane in Hujiahe Coal Field[J]. Coal Science and Technology, 2016, 44(4):119-123. [10] 孟召平,刘珊珊,王保玉,等.不同煤体结构煤的吸附性能及其孔隙结构特征[J].煤炭学报,2015,40(8):1865-1870. Meng Zhaoping, Liu Shanshan, Wang Baoyu, et al. Adsorption Capacity and Its Pore Structure of Coals with Different Coal Body Structure[J]. Journal of China Coal Society, 2015, 40(8):1865-1870. [11] Shahtalebi A, Khan C, Dmyterko A, et al. Investigation of Thermal Stimulation of Coal Seam Gas Fields for Accelerated Gas Recovery[J]. Fuel, 2016, 180:301-313. [12] 骆祖江.沁水盆地3#煤层气井三维数值模拟研究[J].吉林大学学报(地球科学版),2003,33(4):509-513. Luo Zujiang. Three Dimensional Numerical Simulation of 3# Coal Bed Methane Well in Qinshui Basin[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(4):509-513. [13] 孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,26(5):994-1001. Sun Keming, Pan Yishan, Liang Bing. Numerical Simulation of Deep Coal-Bed Methane Multi-Well Exploitation Under Fluid-Solid Coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5):994-1001. [14] Wang Y, Merry H, Amorer G. Enhance Hydraulic Fracture Coalbed Methane Recovery by Thermal Stimulation[C]//SPE/CSUR Unconventional Resources Conference. Calgary:Society of Petroleum Engineers, 2015. [15] Teng T, Wang J G, Gao F, et al. A Thermally Sensitive Permeability Model for Coal-Gas Interactions Iincluding Thermal Fracturing and Volatilization[J]. Journal of Natural Gas Science and Engineering, 2016, 32:319-333. [16] 杨新乐,任常在,张永利,等.低渗透煤层气注热开采热-流-固耦合数学模型及数值模拟[J].煤炭学报,2013, 8(6):1044-1049. Yang Xinle, Ren Changzai, Zhang Yongli, et al. Numerical Simulation of the Coupled Thermal-Fluid-Solid Mathematical Models During Extracting Methane in Low-Permeability Coal Bed by Heat Injection[J]. Journal of China Coal Society, 2013, 8(6):1044-1049. [17] 张永利,张乐乐,马玉林,等.温度作用下煤层瓦斯解吸渗流规律数值模拟[J].防灾减灾工程学报,2014,34(6):671-677. Zhang Yongli, Zhang Lele, Ma Yulin, et al. Numerical Simulation for Desorption and Seepage Rules of Coal-Bed Methane Considering Temperature Conditions[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34, (6):671-677. [18] 杨新乐. 低渗透煤层气注热增产机理的研究[D].阜新:辽宁工程技术大学,2009. Yang Xinle. Study on Mechanism of Injection Heat Increasing Production in Coal-Bed Gas of Low Permeability Coal Seam[D]. Fuxin:Liaoning Technical University, 2009. [19] 孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999. Kong Xiangyan. Advanced Mechanics of Fluids in Porous Media[M]. Hefei:University of Science and Technology of China Press, 1999. [20] Yang D, Zhao Y S, Hu Y Q. The Constitute Law of Gas Seepage in Rock Fractures Undergoing Three-Dimensional Stress[J].Transport in Porous Media, 2006, 63(3):463-472. [21] 梁冰,孙可明.低渗透储层煤层气开采理论及其应用[M].北京:科学出版社,2006. Liang Bing, Sun Keming. Theory and Application of Low Permeability Coal Methane Mining[M]. Beijing:Science Press, 2006. |
[1] | 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072. |
[2] | 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761. |
[3] | 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538. |
[4] | 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492. |
[5] | 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433. |
[6] | 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880. |
[7] | 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716. |
[8] | 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235. |
[9] | 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533. |
[10] | 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278. |
[11] | 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259. |
[12] | 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813. |
[13] | 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542. |
[14] | 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219. |
[15] | 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501. |
|