吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 875-882.doi: 10.13278/j.cnki.jjuese.20190062

• 地质工程与环境工程 • 上一篇    

重金属污染土壤修复的Pb2+钝化产物稳定性

赵玉岩, 姜伟明, 臧利斌, 孙文, 汤肖丹   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2019-06-28 发布日期:2020-05-29
  • 通讯作者: 汤肖丹(1985-),女,副教授,博士,主要从事计算地球化学方面的研究,E-mail:tangxiaodan@jlu.edu.cn E-mail:tangxiaodan@jlu.edu.cn
  • 作者简介:赵玉岩(1981-),男,教授,博士,主要从事地球化学方面的研究,E-mail:zhaoyuyan@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFC0600606);吉林省生态环境厅环保科研项目(吉环科字第2019-12号);中国地质科学院基本科研业务费项目(AS2016P02)

Stability of Pb2+ Passivation Products for Heavy Metal Contaminated Soil Remediation

Zhao Yuyan, Jiang Weiming, Zang Libin, Sun Wen, Tang Xiaodan   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2019-06-28 Published:2020-05-29
  • Supported by:
    Supported by National Key R&D Program of China (2016YFC0600606), Environmental Protection Research Project of Jilin Province Department of Ecology and Environment (Jihuan Kezi No. 2019-12) and Basic Scientific Research Service Expenses Project of Chinese Academy of Geological Sciences (AS2016P02)

摘要: 自然状态下土壤中重金属元素是否稳定存在是重金属污染固化修复技术中的核心问题。本文以常见重金属离子Pb2+为例,分析土壤中重金属离子与常见离子基团结合的稳定性。将第一性原理应用于Pb的存在形态和稳定性的分析,计算了PbCO3、PbSO4、PbCl2、Pb3(PO42、PbAl2O4和Pb3Fe2(PO44的自由能、能带和态密度。首先推断Pb2+和CO32-、SO42-、Cl-、PO43-等土壤中常见阴离子的结合稳定性,再判断加入金属阳离子Al3+和Fe3+对体系稳定性的影响。结果表明:铅化合物自由能从高到低趋势为PbCl2、PbAl2O4、PbCO3、PbSO4、Pb3(PO42、Pb3Fe2(PO44,其相应的结构稳定性顺序从大到小为Pb3Fe2(PO44、Pb3(PO42、PbSO4、PbCO3、PbAl2O4、PbCl2。通过对能带和态密度的分析,首先确定了SO42-和PO43-的引入能够增强含Pb体系的稳定性,进一步加入金属阳离子Fe3+会使体系更稳定。推测SO42-、PO43-为治理Pb2+污染合适的官能团,应选择容易释放SO42-、PO43-的物质作为合适的钝化剂。在实际应用中可选择磷酸二氢钠、无水硫酸钠、脱硫石膏等作为钝化剂。

关键词: Pb2+, 第一性原理, 自由能, 能带结构, 态密度, 稳定性

Abstract: The heavy metal elements in soil under natural conditions is a core concern in the solidification remediation of heavy metal pollution. Taking the common heavy metal Pb2+ as an example, the authors calculated the binding stability of heavy metals with ion groups in soil through applying the first principle to the analysis. The free energy, energy band,and density of states of PbCO3, PbSO4, PbCl2, Pb3(PO4)2, PbAl2O4, and Pb3Fe2(PO4)4 were calculated. The binding stability of Pb2+ with anions in soil such as CO32-, SO42-, Cl- and PO43- was deduced firstly, and then the influence of adding metal cations of Al3+ and Fe3+on the stability. The results show that the trend of free energy of lead compounds is Pb3Fe2(PO4)4 < Pb3(PO4)2 < PbSO4 < PbCO3 < PbAl2O4 < PbCl2, and the corresponding order of structural stability is PbCl2 < PbAl2O4 < PbCO3 < PbSO4 < Pb3(PO4)2 < Pb3Fe2(PO4)4. Through the analysis of energy band and density of states, it is considered that the introduction of SO42- and PO43- can enhance the stability of the lead-containing system, and further addition of the metal cation Fe3+ will make the system more stable. It is suggested that SO42- and PO43- are suitable functional groups for the treatment of Pb2+ pollution, and the substances easily to release SO42- and PO43- should be selected as the appropriate passivator.In future work, sodium dihydrogen phosphate,sodium sulfate and desulfurized gypsum can be used as passivators in field experiments.

Key words: Pb2+, first principle, free energy, band structure, density of states, stability

中图分类号: 

  • P594
[1] 蔡美芳,李开明,谢丹平,等.我国耕地土壤重金属污染现状与防治对策研究[J].环境科学与技术,2014,37(增刊2):223-230. Cai Meifang, Li Kaiming, Xie Danping, et al. The Status and Protection Strategy of Farmland Soils Polluted by Heavy Metals[J]. Environmental Science & Technology,2014,37(Sup.2):223-230.
[2] 赵乾程,杨欣,曹田,等.土壤重金属污染原位钝化修复及效果评价进展研究[J].环境科学与管理,2016,41(12):98-102. Zhao Qiancheng, Yang Xin, Cao Tian, et al. Advances in Research on in Situ Immobilization of Heavy Metal in Contaminated Soil and Its Effect Evaluation[J]. Environmental Science and Management,2016,41(12):98-102.
[3] Chaudhry S A, Khan T A, Ali I. Adsorptive Removal of Pb(II) and Zn(II) from Water onto Manganese Oxide-Coated Sand:Isotherm, Thermodynamic and Kinetic Studies[J]. Egyptian Journal of Basic and Applied Sciences, 2016, 3(3):287-300.
[4] Gu X, Evans L J. Modelling the Adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto Fithian Illite[J]. Journal of Colloid & Interface Science, 2007, 307(2):317-325.
[5] Estève A, Rouhani M D, Estève D. First Principle Calculation of Oxygen Adsorption on a (100) Silicon Surface:First Stages of the Thermal Oxidation[J]. Computational Materials Science, 1998,10(1/2/3/4):94-98.
[6] Xue Wenhui, Yu You, Zhao Yuna, et al. First Principles Calculations of the Electronic, Dynamical, and Thermodynamic Properties of the Rocksalt ScX (X=N, P, As, Sb)[J].Computational Materials Science, 2009,45(4):1025-1030.
[7] 邓胜华,姜志林. F,Na共掺杂P型ZnO的第一性原理研究[J].物理学报, 2014,63(7):291-296. Deng Shenghua, Jiang Zhilin. First-principles Study on P-Type ZnO Codoped with F and Na[J]. Acta Physica Sinica, 2014, 63(7):291-296.
[8] Guo Jianxin, Fu Hui, Zou Guodong, et al. Theoretical Interpretation on Lead Adsorption Behavior of New Two-Dimensional Transition Metal Carbides and Nitrides[J]. Journal of Alloys and Compounds, 2016, 684:504-509.
[9] Colinet C, Tedenac J C. First Principles Calculations of the Stability of the T2 and D88 Phases in the V-Si-B System[J]. Intermetallics, 2014, 50:108-116.
[10] Villaseca S A, Dubois J M,Gaudry E, et al. Lead Adsorption on the Pseudo-10-Fold Surface of the Al13CO4 Complex Metallic Alloy:A First Principle Study[J]. International Journal of Quantum Chemistry, 2013, 113(6):840-846.
[11] 崔航,段振豪,张志刚.通过第一性原理预测内地核的成分与结构[J].岩石学报, 2010,26(4):1322-1328. Cui Hang, Duan Zhenhao, Zhang Zhigang. Prediction of the Composition and Structure of the Earth's Inner Core from the First Principle Calculation[J]. Acta Petrologica Sinica, 2010,26(4):1322-1328.
[12] 卫清,段振豪,毛世德.H2O-CO2-NaCl体系石英溶解度模型(适用于高达1000℃、1.5 GPa的高温高压环境)[J].岩石学报, 2012,28(8):2656-2666. Wei Qing, Duan Zhenhao, Mao Shide. A Thermodynamic Model of Quartz Solubility in H2O-CO2-NaCl Systems up to 1000℃ and 1.5 GPa[J]. Acta Petrologica Sinica, 2012,28(8):2656-2666.
[13] 刘善琪,李永兵,石耀霖.高温高压下黄铁矿热力学性质的第一性原理研究[J].岩石学报, 2018,34(6):1813-1818. Liu Shanqi, Li Yongbing, Shi Yaolin. First-Principles Study of Thermodynamic Properties of Pyrite Under High Pressure and Temperature[J]. Acta Petrologica Sinica, 2018, 34(6):1813-1818.
[14] 史力争,陈惠康,吴川,等.赤泥及其复合钝化剂对土壤铅、镉和砷的稳定效应[J].中国科学院大学学报,2018,35(5):617-626. Shi Lizheng, Chen Huikang, Wu Chuan, et al. Effects of Red Mud and the Combinations on Lead, Cadmium and Arsenic Availability in Contaminated Soil[J]. Journal of University of Chinese Academy of Sciences, 2018,35(5):617-626.
[15] 黎大荣,吴丽香,宁晓君,等.不同钝化剂对土壤有效态铅和镉含量的影响[J].环境保护科学,2013,39(3):46-49. Li Darong, Wu Lixiang, Ning Xiaojun, et al. Effects of Different Passivating Agents on Contents of Available Lead and Cadmium in Soil[J]. Environmental Protection Science, 2013,39(3):46-49.
[16] 王林,徐应明,孙国红,等.海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J].生态环境学报,2012,21(2):314-320. Wang Lin, Xu Yingming,Sun Guohong, et al. Effect and Mechanism of Immobilization of Paddy Soil Contaminated by Cadmium and Lead Using Sepiolite and Phosphate[J]. Ecology and Environmental Sciences, 2012,21(2):314-320.
[17] 赵勇胜,杨元元,高鹏龙,等. 多孔介质中热蒸汽的迁移特性及其修复氯苯污染土壤的效果[J]. 吉林大学学报(地球科学版), 2019, 49(5):1431-1437. Zhao Yongsheng, Yang Yuanyuan, Gao Penglong, et al. Migration Characteristcs of Steam and Its Remediation to Chlorobenzene Contaminated Soil[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1431-1437.
[18] 李悦铭,康春莉,张迎新, 等.溶解性有机质对冻融作用下污染土壤中重金属Pb的溶出释放规律[J].吉林大学学报(地球科学版),2013,43(3):945-953. Li Yueming,Kang Chunli,Zhang Yingxin, et al. Dissolved Organic Matter Effect on Pb Leaching and Release in the Pb Contaminated Soil Dealt with Freeze Thaw Action[J]. Journal of Jilin University (Earth Science Edition),2013,43(3):945-953.
[19] 杨洪利,陈芳,张丹,等.1,2,4-苯三甲酸与2,2-联吡啶构筑的银(Ⅰ)和镉(Ⅱ)配合物的合成、晶体结构、热稳定性及荧光性质[J].无机化学学报,2019,35(9):1579-1585. Yang Hongli,Chen Fang,Zhang Dan, et al.Syntheses, Crystal Structures, Thermal Stabilities and Fluorescence Properties of Silver(Ⅰ) and Cadmium(Ⅱ) Complexes Based on 1,2,4-Benzenetricarboxylic Acid and 2,2'-Bipyridine[J]. Chinese Journal of Inorganic Chemistry,2019,35(9):1579-1585.
[20] Kresse G, Furthmüller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Phys Rev B Condens Matter, 1996, 54(16):11169-11186.
[21] Blochl P E. Projector Augmented-Wave Method[J]. Phys Rev B Condens Matter, 1994,50(24):17953-17979.
[22] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[23] Colby M Y, Lacoste L J B. The Crystal Structure of Cerussite[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1933,84(1):99-309.
[24] Shal K. Die Verfeinerung Der Kristallstrukturen Von PbCl2 (Cotunnit), BaCl2, PbSO4 (Anglesit) and BaSO4 (Baryt)[J].Contributions to Mineralogy & Petrology, 1963,9(2):111-132.
[25] Lumbreras M, Protas J, Jebbari S, et al. Structure and Ionic Conductivity of Mixed Lead Halides PbCl2xBr2(1-x). II[J]. Solid State Ionics, 1986,20(4):295-304.
[26] Angel R J, Bismayer U, Marshall W G. Renormalization of the Phase Transition in Lead Phosphate, Pb3(PO4)2, by High Pressure:Structure[J]. Acta Crystallographica, 2001, 55(6):896-901.
[27] Malakho A P, Morozov V A, Pokholok K V, et al. Layered Ordering of Vacancies of Lead Iron Phosphate Pb3Fe2(PO4)4[J]. Solid State Sciences, 2005, 7(4):397-404.
[28] Marsh R E,Bernal I. More Space-Group Changes[J]. Acta Crystallographica:Section B:Structural Science, 1995,51(3):300-307.
[29] 土壤质量有效态铅和镉的测定原子吸收法:GB/T 23739-2009[S].北京:中国标准出版社,2009. Soil Quality-Analysis of Available Lead and Cadmium Contents in Soils-Atomic Absorption Spectrometry:GB/T 23739-2009[S]. Beijing:Standards Press of China,2009.
[1] 张丙先. 西藏玉曲河下游岸坡倾倒变形机制及稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1539-1545.
[2] 唐军峰, 唐雪梅, 曾向农, 杨军, 李学政. 蓄水后库岸堆积体边坡变形特征及其稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1546-1555.
[3] 李志远, 宫海灵, 张永辉, 李璞. 某电站地下厂房裂隙发育规律及其对围岩稳定性的影响[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1574-1580.
[4] 杨继华, 路新景, 闫长斌, 齐三红, 郭卫新. 基于模糊综合评判的护盾式TBM施工围岩稳定性分类[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1596-1602.
[5] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[6] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[7] 马建全, 王念秦, 张新社. 基于点稳定系数法的斜坡稳定性分析[J]. 吉林大学学报(地球科学版), 2015, 45(2): 533-540.
[8] 周洪福,王春山,聂德新. 断层带岩体变形模量对坝基稳定性影响[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1254-1259.
[9] 王科,王常明,王彬, 姚康,王天佐. 基于MorgensternPrice法和强度折减法的边坡稳定性对比分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 902-907.
[10] 支墨墨,尚岳全,徐兴华. 碎石土滑坡稳定性一元多重属性回归模型分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 883-890.
[11] 言志信,马国哲,龙哲,段建,任志华,彭宁波,刘子振. 青藏高原东北缘推覆体构造稳定性定量化评价--以龙门山推覆体为例[J]. 吉林大学学报(地球科学版), 2013, 43(2): 484-493.
[12] 沈世伟, 佴磊, 徐燕. 不同权重条件下降雨对边坡稳定性影响的二级模糊综合评判[J]. J4, 2012, 42(3): 777-784.
[13] 齐干, 杨国兴, 李兵. 西藏古格王国遗址洞窟变形破坏模式、机制及加固对策[J]. J4, 2011, 41(5): 1494-1503.
[14] 张兰英, 张学庆, 任何军, 代焕芳, 李燕, 朱颜. 微生物浸矿驱提页岩油的技术进展[J]. J4, 2011, 41(5): 1562-1572.
[15] 阮壮, 于炳松, 李朝晖, 朱筱敏. 埋藏条件下方解石热力学平衡及其在塔河油田埋藏岩溶预测中的应用[J]. J4, 2011, 41(4): 1020-1027.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!