吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 416-428.doi: 10.13278/j.cnki.jjuese.20200069

• 地质与资源 • 上一篇    

冀东峪耳崖金矿区闪长岩脉地球化学特征及其地质意义

杨爱雪1,2, 孙德有2, 侯雪刚2,3, 王久良1, 张继林4, 李临位4   

  1. 1. 河北省地质矿产勘查开发局第五地质大队, 河北 唐山 063000;
    2. 吉林大学地球科学学院, 长春 130061;
    3. 河南省国土资源科学研究院, 郑州 450053;
    4. 中国黄金集团有限公司, 北京 100010
  • 收稿日期:2020-03-23 发布日期:2021-04-06
  • 通讯作者: 孙德有(1965-),男,教授,博士生导师,主要从事火成岩及地球化学方面的研究,E-mail:sundy@jlu.edu.cn E-mail:sundy@jlu.edu.cn
  • 作者简介:杨爱雪(1992-),女,硕士研究生,主要从事火成岩方面的研究,E-mail:337394871@qq.com
  • 基金资助:
    中国黄金集团有限公司科研项目(ZJ-DJ/2015-HBYEY)

Geochemical Characteristics and Geological Significance of Diorite of Yu'erya Gold Deposit Area in Eastern Hebei Province

Yang Aixue1,2, Sun Deyou2, Hou Xuegang2,3, Wang Jiuliang1, Zhang Jilin4, Li Linwei4   

  1. 1. The Fifth Geology Company of Hebei Geology ﹠ Minerals Bureau, Tangshan 063000, Hebei, China;
    2. College of Earth Sciences, Jilin University, Changchun 130061, China;
    3. Henan Academy of Land and Resources Sciences, Zhengzhou 450053, China;
    4. China National Gold Group Co., Ltd, Beijing 100010, China
  • Received:2020-03-23 Published:2021-04-06
  • Supported by:
    Supported by the Scientific Research Projects of China National Gold Group Co., Ltd(ZJ-DJ/2015-HBYEY)

摘要: 冀东地区位于华北板块北缘燕山造山带东部,矿产资源丰富,是中国金矿的主要产地之一,尤其是热液型金矿。峪耳崖金矿床是冀东众多热液型金矿床的典型代表,金矿主体赋存于侏罗纪峪耳崖花岗岩体内,少部分赋存于侵入花岗岩体的侏罗纪闪长岩脉中。闪长岩脉元素地球化学分析显示:w(SiO2)为51.99%~61.88%、Mg#值为0.37~0.64,w(Na2O+K2O)为5.07%~8.89%,A/NK为1.37~2.26,A/CNK为0.73~0.96,属准铝质高钾钙碱性系列;富集轻稀土元素和大离子亲石元素Rb、Ba、K、Sr,亏损重稀土元素和高场强元素Nb、Ta、Ti。锆石原位Hf同位素测试表明,εHft)为负值,介于-16.5~-6.5之间。综合研究认为:峪耳崖金矿区侏罗纪闪长岩浆源于俯冲流体交代的富集岩石圈地幔,岩浆上侵过程中受到华北板块古老下地壳物质的有限混染;成矿期闪长岩浆为金成矿提供了部分物质来源;峪耳崖金矿区闪长岩脉形成于古太平洋板块向欧亚大陆俯冲的动力学背景。

关键词: 闪长岩脉, 地球化学, Hf同位素, 岩石成因, 峪耳崖金矿床

Abstract: Located in the eastern part of the Yanshan orogenic belt on the northern margin of the North China plate in eastern Hebei Province,Yu'erya is one of the main gold producing areas especially with hydrothermal gold deposits. The Yu'erya deposit is representative in eastern Hebei Province, which occurs mainly in the granite of the Jurassic Yu'erya pluton with a few orebodies in the Jurassic diorite that intruded into the granite. The geochemical data show that the w(SiO2) of diorites is 51.99%-61.88% and w(Na2O+K2O) is 5.07%-8.89%, with Mg# values between 0.37 to 0.64. They are high-potassium calc-alkaline and quasi-aluminum with A/CNK and A/NK values ranging from 0.73 to 0.96 and 1.37 to 2.26, respectively. All samples are rich in LREE and LILE including Rb, Ba, K,and Sr, and are depleted of HREE and HFSE such as Nb, Ta and Ti. The zircon Hf isotope studies show that the εHf(t) values of the diorites range from -16.5 to -6.5. These data indicate that the Jurassic diorite magma originated from the enriched lithospheric mantle replaced by subduction fluids, and was contaminated limitedly by the ancient lower crust material of the North China plate during magma upwelling. In the ore-forming period,the diorite magma provided part of the material for the gold mineralization. Combined with other regional results, this study suggests that the magmatism is likely associated with the subduction of the paleo-Pacific plate beneath Eurasia.

Key words: diorite, geochemistry, Hf isotope, petrogenesis, Yu’erya gold deposit

中图分类号: 

  • P588.13
[1] 尹业长,郝立波,赵玉岩,等.冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J].吉林大学学报(地球科学版),2018,48(2):574-586. Yin Yechang,Hao Libo,Zhao Yuyan,et al. Gaojiadian Granite and Shepantu Granite in Eastern Hebei Province:Chronology,Geochemistry and Geological Significances[J].Journal of Jilin University(Earth Science Edition),2018,48(2):574-586.
[2] 龙天祥,何小虎,刘飞,等.长安金矿区碱性岩锆石U-Pb年代学、微量元素、Hf同位素特征及其地质意义[J].吉林大学学报(地球科学版),2019,49(6):1607-1627. Long Tianxiang,He Xiaohu,Liu Fei,et al.Zircon U-Pb Geochronology,Trace Element,Hf Isotope of Alkaline Rochs from Chang'an Gold Deposit and Its Geological Implication[J].Journal of Jilin University(Earth Science Edition),2019,49(6):1607-1627.
[3] 王建中,李建威,赵新福,等.铜陵地区朝山矽卡岩型金矿床及含矿岩体的成因:40Ar/39Ar年龄、元素地球化学及多元同位素证据[J].岩石学报,2008,24(8):1875-1888. Wang Jianzhong,Li Jianwei,Zhao Xinfu,et al. Genesis of the Chaoshan Gold Deposit and Its Host Intrusion,Tongling Area:Constraints from 40Ar/39Ar Ages and Elemental and Sr-Nd-O-C-S Isotope Geochemistry[J]. Acta Petrologica Sinica,2008,24(8):1875-1888.
[4] 谢建成,杨晓勇,肖益林,等.铜陵矿集区中生代侵入岩成因及成矿意义[J].地质学报,2012,86(3):423-459. Xie Jiancheng,Yang Xiaoyong,Xiao Yilin,et al.Petrogenesis of the Mesozoic Intrusive Rocks from the Tongling Ore Cluster Region:The Metallogenic Significance[J].Acta Geologica Sinica,2012,86(3):423-459.
[5] 施珂,杨晓勇,杜建国,等.安徽铜陵杨冲里金矿床成矿流体特征与成矿模式探讨[J].岩石学报,2019,35(12):3734-3748. Shi Ke,Yang Xiaoyong,Du Jianguo,et al.Study on Fluid Characteristics and Discussion on Its Metallogenic Model of Yangchongli Gold Deposit in the Tongling,Anhui Province[J].Acta Petrologica Sinica,2019,35(12):3734-3748.
[6] 杨爱雪,孙德有,张继林,等.冀东峪耳崖金矿区闪长岩脉的锆石U-Pb年龄测定[J].黄金,2016,37(8):14-18. Yang Aixue,Sun Deyou,Zhang Jilin,et al.Zircon U-Pb Dating of Diorite Dikes from Yu'erya Gold District in Eastern Hebei Province[J].Gold,2016,37(8):14-18.
[7] Song Y,Jiang S H,Bagas L,et al. The Geology and Geochemistry of Jinchangyu Gold Deposit,North China Craton:Implications for Metallogenesis and Geodynamic Setting[J].Ore Geology Reviews,2016,73:313-329.
[8] 杨付领,牛宝贵,任纪舜,等.马兰峪背斜核部中生代侵入岩体锆石U-Pb年龄、地球化学特征及其构造意义[J].地球学报,2015,36(4):445-465. Yang Fuling,Niu Baogui,Ren Jishun,et al. Zircon U-Pb Ages and Geochemical Characteristics of the Mesozoic Intrusive Bodies Along the Core of the Malanyu Anticline and Their Tectonic Significances[J]. Acta Geoscientica Sinica,2015,36(4):445-465.
[9] Xu P,Wu F Y,Xie L W,et al.Hf Isotopic Compositions of the Standard Zircons for U-Pb Dating[J].Chinese Science Bulletin,2004,49(15):1642-1648.
[10] Wu F Y,Yang Y H,Xie L W,et al.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J].Chemical Geology,2006,234(1/2):105-126.
[11] 彭头平,王岳军,范蔚茗,等.南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究[J].岩石学报,2004,20(5):1253-1262. Peng Touping,Wang Yuejun,Fan Weiming,et al.SHRIMP Zircon U-Pb Geochronology of the Giorites for Southern Taihang Mountains in the North China Interior and Its Petrogenesis[J].Acta Petrologica Sinica,2004,20(5):1253-1262.
[12] 陈艳,张招崇,朱江.河南省安林矽卡岩型铁矿的成岩时代和成矿物质来源探讨[J].岩石学报,2014,30(5):1307-1321. Chen Yan,Zhang Zhaochong,Zhu Jiang.Geochronology of the Anlin Iron Skarn Deposit,Henan Province and Insight into the Sources of Iron.[J].Acta Petrologica Sinica,2014,30(5):1307-1321.
[13] 钱青,钟孙霖,李通艺,等.八达岭基性岩和高Ba-Sr花岗岩地球化学特征及成因探讨:华北和大别-苏鲁造山带中生代岩浆岩的对比[J].岩石学报,2002,18(3):275-292. Qian Qing,Zhong Sunlin, Li Tongyi,et al.Geochemical Characteristics and Petrogenesis of the Badaling High Ba-Sr Granitoids:A Comparison of Igneous Rocks from North China and the Dabie-Sulu Orogen[J].Acta Petrologica Sinica,2002,18(3):275-292.
[14] Yang J H,Wu F Y,Chung S L,et al. A Hybrid Origin for the Qianshan A-Type Granite,Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence[J]. Lithosphere,2006,89:89-106.
[15] 张旗,王焰,熊小林,等.埃达克岩和花岗岩:挑战与机遇[M].北京:中国大地出版社,2008. Zhang Qi,Wang Yan,Xiong Xiaolin,et al. Adakite and Granite:Challenges and Opportunities[M].Beijing:China Land Press,2008.
[16] Rapp R P,Watson E B.Dehydration Melting of Metabasalt at 8~32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J].Journal of Petrology,1995,36(4):891-93l.
[17] Jahn B M,Wu F Y,Lo C H,et al.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex,Central China[J]. Chemical Geology,1999,157:119-146.
[18] Gill J B.Orogenic Andesites and Plate Tectonics[M].Berlin:Springer Verlag,1981:385.
[19] Mecdonald R,Rogers N W,Fitton J G.Plume Lithosphere Interactions in the Generation of the Basalts of the Kenys Rift,East Africa[J].Journal of Petrology,2001,42:877-900.
[20] Goswami T K.Subduction Related Magmatism:Constrainsfrom the REE Pattern in the Lohit Batholith,Arunachal Pradesh,India[J]. Geosciences,2013,3(4):128-141.
[21] Rottura A,Bargossi G M,Caggianelli A,et al. Origin and Significance of the Permian High-K Cale-Alkaline Magmatism in the Centrl-Eastern Southern Alps[J].Lithosphere,1998,45(1/2/3/4):345-348.
[22] 孙熠.河北邯邢地区早白垩世岩浆作用及成矿意义[D].武汉:中国地质大学(武汉),2016. Sun Yi.Petrogenesis and Mineralization of the Early Cretaceous Intrusive Rocks in Handan-Xingtai Area,Hebei Province,China[D].Wuhan:China University of Geosciences (Wuhan),2016.
[23] Louro V H A,Cawood P A,Mantovani M S M,et al.Tectonic Insights of the Southwest Amazon Craton from Geophysical,Geochemical and Mineralogical Data of Figueira Branca Mafic-Ultramafic Suite, Brazil[J]. Tectonophysics,2017,708:96-107.
[24] 陈绍聪,叶会寿,王义天,等.冀东峪耳崖金矿床辉钼矿Re-Os年龄及其地质意义[J].中国地质,2014,41(5):1565-1576. Chen Shaocong,Ye Huishou,Wang Yitian,et al. Re-Os Age of Molybdenite from the Yu'erya Au Deposit in Eastern Hebei Province and Its Geological Significance[J]. Geology in China,2014,41(5):1565-1576.
[25] 陈绍聪,叶会寿,王义天,等.冀东峪耳崖金矿床蚀变绢云母40Ar-39Ar年龄及其地质意义[J].矿床地质,2019,38(3):557-570. Chen Shaocong,Ye Huishou,Wang Yitian,et al.40Ar-39Ar Age of Altered Sericite from Yu'erya Au Deposit in Eastern Hebei Province and Its Geological Significance[J]. Mineral Deposits,2019,38(3):557-570.
[26] 姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006. Yao Fengliang,Sun Fengyue. A Course in Mineralogy[M]. Beijing:Geological Publishing House,2006.
[27] 唐杰,许文良,王枫,等.古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代-古近纪岩浆记录[J].中国科学:地球科学,2018,48(5):549-583. Tang Jie,Xu Wenliang,Wang Feng,et al. Subduction History of the Paleo-Pacific Slab Beneath Eurasian Continent:Mesozoic-Paleogene Magmatic Records in Northeast Asia[J].Science China:Earth Sciences,2018,48(5):549-583.
[28] 马强.辽西三叠纪-侏罗纪火山岩:华北北缘东段下地壳再造与克拉通破坏[D].武汉:中国地质大学(武汉),2013. Ma Qiang.Triassic-Jurassic Volcanic Rocks in Western Liaoning Implications for Lower Crustal Reworking and Lithospheric Destruction in the North Part of Eastern North China Craton[D].Wuhan:China University of Geosciences (Wuhan),2013.
[29] 何泽宇,申俊峰,王来明,等.胶东宋家沟金矿中基性脉岩锆石U-Pb年代学、地球化学及其地质意义[J].世界地质,2020,39(3):509-527. He Zeyu,Shen Junfeng,Wang Laiming,et al.LA-ICP-MS U-Pb Dating,Geochemistry and Geological Implications of Intermediate-Mafic Dikes in Songjiagou Gold Deposit,Eastern Shandong Province[J]. Global Geology,2020,39(3):509-527.
[30] 李洪奎,李大鹏,耿科,等.胶东地区燕山期岩浆活动及其构造环境:来自单颗锆石SHRIMP年代学的记录[J].地质学报,2017,91(1):163-179. Li Hongkui,Li Dapeng,Geng Ke,et al. The Mesozoic Magmaticactivities Framework in Jiaodong Area:SHRIMP Chronology Recording of Single Particle Zircon[J].Acta Geologica Sinica,2017,91(1):163-179.
[1] 田兴旺, 罗冰, 孙奕婷, 刘冉, 李亚, 陈延贵, 周春林, 汪华, 李亚丁, 王尉, 王云龙, 杨岱林. 二叠系火山碎屑岩气藏天然气地球化学特征及气源分析——以四川盆地成都—简阳地区永探1井为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 325-335.
[2] 梁涛, 卢仁. 豫南伏牛山余脉铜山岩体锆石U-Pb定年、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 400-415.
[3] 覃小锋, 张诚, 王宗起, 马收先, 宫江华, 冯毅, 崔安民, 李东. 桂北宝坛锡多金属成矿区平英岩体晚期侵入岩的年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 380-399.
[4] 尹志刚, 宫兆民, 王春生, 刘松杰, 张圣听, 王冠群, 周小刚, 张志浩. 小兴安岭平顶山一带早侏罗世花岗岩类年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 107-125.
[5] 陆胜, 王可勇, 赵焕利, 相雷, 刘阳, 张志博. 大兴安岭漠河前哨林场侵入岩年代学、岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 126-140.
[6] 王宇晴, 董春艳, 白文倩, 颉颃强, 万渝生. 鲁西莲花山地区新太古代晚期二长花岗岩中的表壳岩包体——SHRIMP锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 141-153.
[7] 李守奎, 张世涛, 赵庆红, 黎明. 滇西兰坪皂角场新生代富碱斑岩体锆石U-Pb年代学及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 169-184.
[8] 岳悦, 孙德有, 侯可军, 彭银彪. 柴北缘乌兰北部三叠纪辉长岩的年代学和地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 154-168.
[9] 张新远, 李五福, 王春涛, 刘建栋, 欧阳光文. 青海拉脊山东段白家藏侵入岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1703-1719.
[10] 明添学, 杨清标, 李蓉, 唐忠, 薛戈, 罗建宏, 余海军, 李永平. 滇西加里东期平河复式花岗岩体锆石U-Pb年龄、Hf同位素特征及其风化壳型稀土矿成矿认识[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1685-1702.
[11] 李玉超, 王诚煜, 于成广. 辽宁丹东地区土壤Se元素地球化学特征及其影响因素[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1766-1775.
[12] 董洋, 刘苏, 张思佳. 辽东岫岩王家堡子地区二长花岗岩U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1720-1736.
[13] 彭游博, 刘文彬, 赵军, 崔育崧, 杨成会, 赵辰, 温聪. 辽南岩体LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义——以盖州万福-岫岩龙潭地区三叠纪侵入岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1737-1751.
[14] 孙立影, 杨晨, 赵海士, 常志勇. 基于极限学习机的遥感地球化学反演模型[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1929-1938.
[15] 豆世勇. 辽北开原地区房木花岗斑岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1752-1765.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!